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Distributionally Robust Adaptive Beamforming
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Abstract—As a fundamental technique in array signal pro-
cessing, beamforming plays a crucial role in amplifying signals
of interest (SoI) while mitigating interference plus noise (IPN).
When uncertainties exist in the signal model or the data size
of snapshots is limited, the performance of beamformers signif-
icantly degrades. In this article, we comprehensively study the
conceptual system, theoretical analysis, and algorithmic design
for robust beamforming against uncertainties in the assumed
snapshot or IPN covariances. Since such robustness is specific
to the probabilistic uncertainties of snapshots or IPN signals,
it is referred to as distributional robustness. Particularly, four
technical approaches for distributionally robust beamforming are
proposed, including locally distributionally robust beamforming,
globally distributionally robust beamforming, regularized beam-
forming, and Bayesian-nonparametric beamforming. In addition,
we investigate the equivalence among the four technical ap-
proaches and suggest a unified distributionally robust beamform-
ing framework. Moreover, we show that the resolution of power
spectra estimation using distributionally robust beamforming
can be greatly refined by incorporating the characteristics of
subspace methods, and hence, the accuracy of IPN covariance
reconstruction can be improved, especially when the interferers
are close to the SoI. As a result, the robustness of beamformers
based on IPN covariance estimation can be further enhanced.

Index Terms—Robust Beamforming, Distributional Robust-
ness, Regularization, Bayesian Nonparametrics

I. INTRODUCTION

Adaptive beamforming, or simply beamforming, has
shown numerous successful applications in array signal

processing, e.g., wireless communications, radar, and sonar, to
enhance signals of interest (SoI) and suppress interference plus
noise (IPN). Typical examples include the waveform, power,
and direction-of-arrival (DoA) estimation of the SoI, as well as
the maximization of the array’s output signal-to-interference-
plus-noise ratio (SINR) [1]–[4]. To achieve these application
purposes, a large body of representative beamformers have
been put forward [1], [3], such as the minimum mean-
squared error (MMSE) beamformer for waveform estimation,
the Bartlett beamformer (i.e., delay-and-sum beamformer,
conventional beamformer, or matched filter) for power and
DoA estimation, the minimum power distortionless response
(MPDR) beamformer (i.e., Capon beamformer) for power
and DoA estimation, and the minimum variance distortionless
response (MVDR) beamformer for SINR maximization, etc.
The difference between the MPDR and MVDR beamformers
is whether the snapshot covariance or the IPN covariance is
used [5], that is, SoI-contaminated or SoI-free [6]. In the SoI-
free case, the snapshot covariance coincides with the IPN
covariance, so the MPDR and MVDR beamformers become
identical. As a convention and without loss of generality [7,
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p. 1705], [8], this article employs SINR as the performance
metric for beamformer design, and hence, the MPDR and
MVDR beamformers are particularly focused on [9], [10].

A. Uncertainty Issues and Literature Review

The SINR performance of MPDR and MVDR beamformers,
however, degrades significantly when uncertainties exist in the
assumed steering vector or in the estimated snapshot and IPN
covariances [6], [11]–[13], although in such a case the MVDR
beamformer tends to outperform the MPDR beamformer [5].
These uncertainties include, for example, array calibration
errors, array pointing (i.e., looking-direction) errors, limited
data size of snapshots, and non-stationarity of emitting signals
or channel noises (e.g., time-varying powers) [2], [12], [13].
To handle these uncertainties, several archetypal treatments
have been introduced in the past to improve the robustness of
beamformers. Herein, the robustness of a beamformer means
the ability to be insensitive to reasonably small uncertainties
[6], [9], [11], and consequently, the performance of a robust
beamformer in real-world operation can remain as satisfactory
as that in the design phase [13]. As per the design motivations,
existing treatments can be categorized into three main streams:
1) robustness against uncertainties in steering vectors, 2)
robustness against uncertainties in snapshot covariances, and
3) robustness based on IPN covariance reconstruction.

1) Robustness Against Uncertainties in Steering Vectors:
Uncertainties in steering vectors come from array calibration
errors, pointing errors (i.e., DoA mismatches), etc [6]–[8],
[10], [14]. Representatives in this stream include the following:
1a) Linearly constrained minimum variance (LCMV) beam-

forming [15] [13, Section 2.5], [16, Section 6];
1b) Covariance matrix tapering to widen nulls and beams,

which leverages the phase dithering effect [12], [17,
Section 2]. Some technical equivalences between this
approach and Method 1a) are noted in [18];

1c) Bayesian beamforming, which assumes a probability dis-
tribution of the DoA, and then obtains the expected
beamformer under this DoA distribution [19], [20];

1d) Beampattern control, which, conceptually similar to
Method 1a), requires the array power response to comply
with some prerequisites [16], [21];

1e) Steering vector estimation via eigenspace projection [22],
[23] or output power maximization [14], [24], [25]. The
eigenspace projection indirectly increases the array output
power in the MPDR beamforming scheme. Also, the
covariance-fitting methods in [7, Eqs. (8), (9)] and [26,
Eqs. (10), (13)] amount to output power maximization;

1f) Worst-case array unity response [6]–[8], [10], [17], [27].
Regarding objective functions, Method 1e) is technically
equivalent to this approach under the MPDR beamforming
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scheme; see [9, Eq. (17)], [14, Eq. (23)], [25, Eq. (12)],
[7, Appendices A, C];

1g) Probabilistic worst-case array unity response, which can
be technically cast into Method 1f) [28];

1h) Imposing quadratic constraints on beamformers [11,
p. 1366], [29, p. 742]. Some beampattern control problems
are technically equivalent to this approach [16, Eq. (22)].

Methods 1a), 1b), and 1c) are ad hoc to DoA mismatches,
while Methods 1d), 1e), 1f), 1g), and 1h) can apply to arbitrary
types of uncertainties in the steering vector. The philosophy
of robustness behind Methods 1a), 1b), 1d), 1f), and 1g)
is to identify a plausible uncertainty set for the actual but
unknown steering vector, and then guarantee that the array
power responses for all elements in this set are controlled, for
example, greater than unity. In the case of DoA mismatch, the
uncertainty set is induced by the uncertainty region of DoA
under the array geometry. In contrast, the philosophy of robust-
ness behind Method 1c) is to consider an uncertainty region
of DoA through employing a distribution of DoA. Moreover,
the philosophy of robustness behind Method 1e) is that the
actual steering vector should lie in the subspace of signal-
plus-interference or should increase the array output power.
In addition, the philosophy of robustness behind Method 1h)
is to limit the array’s sensitivity to various errors because the
sensitivity can be measured by the 2-norm of beamformers.

All methods, except Method 1e), can be integrated or
adapted into both the MPDR and MVDR beamforming to
enhance their robustness. Method 1e) cannot be considered
in the MVDR beamforming scheme because in this case,
the subspace of signal-plus-interference and the array output
power are not applicable.

2) Robustness Against Uncertainties in Snapshot Covari-
ances: Uncertainties in snapshot covariances can be caused
by the limited data size of snapshots, the non-stationarity of
signal characteristics, etc [10], [12], [17], [30]–[32]. When the
SoI is absent in snapshots, the snapshot covariance coincides
with the IPN covariance. Representatives in this stream include
the following:

2a) Advanced techniques to estimate the covariance ma-
trix using snapshots, for example, the M-estimator [33],
[34], the spiked covariance estimator [32], the eigenvalue
thresholding method [35], the diagonal loading method
[30], [36]–[38], the prior-knowledge embedding method
[31], etc. The M-estimator can suppress outliers in snap-
shots, while the remaining can combat snapshot scarcity.

2b) Worst-case optimization [17, Eq. (46)], [10, Eq. (10)],
[9, Eq. (9)]. This approach can be shown to technically
amount to the diagonal loading method [17].

The philosophy of robustness behind Method 2a) is to obtain
a better covariance estimate, which is closer to the ground
truth than the usual sample covariance matrix. By feeding this
better covariance to beamforming, the performance is expected
to improve. On the contrary, the philosophy of robustness
behind Method 2b) is to optimize the worst-case performance,
e.g., to maximize the worst-case SINR [9]. In [10], [17], this
worst-case SINR is determined by minimizing SINR over the
covariance estimation error, which is characterized by an F-

norm ball.
Depending on whether the SoI is present in snapshots or not,

these methods correspond to the robust MPDR and MVDR
beamformers, respectively.

3) Robustness Based on IPN Covariance Reconstruction:
Motivated by the fact that the MVDR beamformer tends to be
more robust than the MPDR beamformer [5], another philos-
ophy to achieve robustness is to estimate the IPN covariance
matrix from snapshots before beamforming. This approach
applies to the case where the SoI is present in snapshots.
Representatives in this stream include the following:
3a) Strategies via spectra estimation, for example, the Capon

spectra [39] and the maximum-entropy spectra [40]. Im-
provements in terms of uncertainty-awareness and com-
putation reduction are reported in [41] and [42], [43],
respectively;

3b) Strategies via SoI cancellation, e.g., [44, Eq. (26)] and [45,
Eq. (27)], where the snapshot covariance is first estimated
and then the IPN covariance is recovered through subtract-
ing the SoI component from the snapshot covariance.

B. Problem Statements

Although various challenges in robust adaptive beamform-
ing have been attacked, the following issues remain unsolved.
I1) In the literature, although the notion of “robust beamform-

ing” is widely used, the quantification and formalization
have never been studied. The only effort in this direction is
found in, e.g., [11], [29], where the authors propose to use
the white-noise gain [11] or the (normalized) squared mag-
nitude [29] as a quantitative measure of the robustness of a
beamformer. However, this robustness formalism does not
apply to the uncertainties in the snapshot and IPN covari-
ances. On the other hand, although numerous minimax-
optimization-based approaches claim the robustness of
their resultant beamformers [17, Eq. (46)], [10, Eq. (10)],
the rigorous relation between the beamformer’s robustness
and minimax optimization remains unclear. Therefore, a
comprehensive study of the conceptual system, theoretical
analysis, and algorithmic design for robust beamforming,
specifically against uncertainties in snapshot and IPN
covariances, has to be conducted.

I2) Regarding robustness against uncertainties in snapshot
covariances, the relations between Methods 2a) and 2b)
are unclear. To clarify further, in the existing litera-
ture, researchers tacitly employ the eigenvalue threshold-
ing method, the diagonal loading method, or the prior-
knowledge embedding method, and then focus on tun-
ing the involved parameters using different empirical or
algorithmic criteria [30], [31], [36]–[38]. However, the
rationale behind these choices has not been systematically
elaborated. A specific question is as follows: In addition
to diagonal loading [17], can eigenvalue thresholding [35]
and prior-knowledge embedding [31] also be shown to
optimize the worst-case performance? This issue remains
valid for both the MPDR beamformer that relies on the
snapshot covariance and the MVDR beamformer that
relies on the IPN covariance.
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I3) In the robustness framework based on IPN covariance
reconstruction, i.e., Methods 3a) and 3b), the estimation
error of IPN is also unavoidable. Hence, it is natural to ask:
Can the robustness of this framework be further improved
using the robustness strategies in Methods 2a) and 2b)?
This question has not been answered in the literature.

I4) In Method 3a) for IPN covariance reconstruction, the
resolution of spectra estimation should be sufficiently high
to suppress interferers that locate close to the SoI. This
concern has also been raised in [41, p. 1647], [40, Fig. 1].
However, the resolution of the Capon spectra and the
maximum-entropy spectra are still limited [46, Fig. 3],
[47], and therefore, higher-resolution spectra estimation
methods are expected to improve the estimation accuracy
of the IPN covariance, especially when interferers are
close to the SoI. The challenge is that modern high-
resolution spectra estimation methods, such as multiple
signal classification (MUSIC) and other subspace strate-
gies, do not directly provide spectral estimates. Instead,
they generate pseudo-spectra to identify the DoAs of
interferers. On the other hand, to ensure high accuracy
of IPN covariance reconstruction, the power spectra es-
timation should be unbiased, that is, no gaps between
identified DoAs and true DoAs of interferers. However,
the maximum-entropy spectra tend to have large biases
[46, Fig. 4]. As for Method 3b), it innately assumes that
interferers are well-separated from the SoI, which limits
its applicability when interferers are close to the SoI.

C. Contributions

To address the four issues aforementioned, this article makes
the following contributions.
C1) We propose a quantitative definition of robustness against

uncertainties in snapshot and IPN covariances, and prove
that many existing beamformers in Methods 2a) and
2b) are indeed robust; for example, diagonal loading,
eigenvalue thresholding, prior-knowledge embedding can
be shown to amount to worst-case optimization; see
Definitions 1 and 2, Theorems 1, 2, and 3, Examples
1, 2, 3, 4, and 6, Corollaries 1 and 2, and Insights 1
and 2. To emphasize the probabilistic nature of snapshots
and IPN signals, and differentiate from the robustness
against uncertainties in steering vectors, we call the
introduced concept as “distributional robustness”. Subse-
quently, four technical approaches for distributionally ro-
bust beamforming are proposed, i.e., locally distribution-
ally robust beamforming, globally distributionally robust
beamforming, regularized beamforming, and Bayesian-
nonparametric beamforming; see Models (20), (31), (41),
and (45). The equivalence among these approaches is
investigated and a unified distributionally robust beam-
forming framework is suggested; see Insight 3.

C2) We show that by incorporating the characteristics of
the MUSIC method into the proposed distributionally
robust (DR) beamforming framework, the resolution of
spectra estimation can be greatly refined. As a result, the
SINR performance of DR beamformers based on IPN

covariance reconstruction can be largely improved when
interferers are close to the SoI; see Insight 4, Method 1,
and Algorithm 1.

Contribution C1) solves Issues I1), I2), and I3), while
Contribution C2) addresses Issue I4).

D. Notations

Uppercase symbols (e.g., X) denote matrices while low-
ercase ones are reserved for vectors (e.g., x). We use up-
right and italic fonts for random and deterministic quantities,
respectively; e.g., X and x, and X and x. Let Cd denote
the d-dimensional space of complex numbers. The running
index set [K] induced by integer K is defined as [K] :=
{1, 2, 3, . . . ,K}. Let ∥X∥, TrX , X−1, XT, and XH denote
a norm, the trace, the inverse (if exists), the transpose, and the
conjugate transpose of matrix X; the definition of a matrix
norm will be specified in contexts. For two matrices A and
B, A ⪰ B means that A − B is positive semidefinite.
The d-dimensional identity matrix is written as Id and a
zero matrix/vector with compatible dimensions is as 0. Let
CN (µ,Σ,Σ′) denote the complex normal distribution with
mean µ, covariance Σ, and pseudo-covariance Σ′; if Σ′ is not
specified, we admit Σ′ = 0. Let EP[·] denote the expectation
operator under distribution P.

II. SYSTEM MODEL, EXISTING WORKS, AND RESEARCH
QUESTIONS

A. System Model

This article focuses on base-band and narrow-band signal
processing. Suppose K signals impinge on an N -element
antenna array. Let x ∈ CN denote the array input (i.e.,
snapshot), sk ∈ C the kth incident signal for k ∈ [K], and
θk the DoA of sk. The signal model for a single snapshot is

x =

K∑
k=1

a0(θk)sk + v, (1)

where a0(θ) ∈ CN denotes the array steering vector in
direction θ and v ∈ CN the channel noise. In usual array
signal processing literature, it is assumed that sk ∼ CN (0, σ2

k)
and v ∼ CN (0, σ2

nIN ), in which σ2
k is the signal power and

σ2
n is the noise power. Without loss of generality, we suppose

that s1 is the signal of interest and sk for k = 2, 3, . . . ,K
are interference signals. Let w ∈ CN be a beamformer. The
corresponding array output is

y = wHx = wHa0(θ1)s1 +wH
K∑

k=2

a0(θk)sk +wHv, (2)

and the array output SINR is

h(w,a0(θ1),Ri+n) :=
σ2
1w

Ha0(θ1)a0(θ1)
Hw

wHRi+nw
, (3)

where Ri+n :=
∑K

k=2 σ
2
ka0(θk)a0(θk)

H + σ2
nIN denotes the

covariance of the interference signals plus noise. Depending on
specific applications, the typical roles of beamforming include
the following: to adjust array output SINR (3), to estimate SoI
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waveform s1 using y [4], [48], to estimate SoI power σ2
1 using

EyyH [7], [26], and to estimate DoAs θk using the directions
corresponding to the largest output powers EyyH [47, p. 1019].

The MVDR beamformer in direction θ solves the following
beamforming problem:

min
w

wHRi+nw

s.t. wHa0(θ) = 1.
(4)

The MVDR beamformer is optimal in many senses: to achieve
maximum output SINR (3) and to attain maximum likelihood
estimate of SoI s1 given x when θ := θ1 [47, Eq. (20)]. In
practice, however, the IPN covariance Ri+n is unknown, and
alternatively, the following MPDR (i.e., Capon) beamforming
problem that minimizes the array output power EyyH in
direction θ is solved:

min
w

wHRxw

s.t. wHa0(θ) = 1,
(5)

where Rx := Ex∼Px [xx
H] denotes the covariance of received

signal x in direction θ and Px its underlying true distribution;
note that Rx can be estimated using collected snapshots. In
what follows, we use a0 as a shorthand for a0(θ), if no
ambiguity is caused. Among existing beamformers, when the
snapshot covariance Rx and the array steering vector a0 are
(almost) exactly known, the MPDR beamformer is most popu-
lar for its excellent performance and real-world operationality.
To be specific, the MPDR beamformer is optimal in the sense
of MPDR waveform estimation [8], [4, Eq. (4)], MPDR power
estimation [7, Eq. (7)], high-resolution DoA estimation [47],
[49], and SINR maximization [9, p. 1540], [13, Eq. (10)].
In addition, the snapshot covariance can be estimated using
the array input data, while the IPN covariance in the MVDP
beamforming is difficult to obtain for the SoI-contaminated
case. However, if the SoI s1 is absent in the snapshot x, the
snapshot covariance Rx matches the IPN covariance Ri+n,
and the MPDR beamformer becomes the MVDR beamformer.

Hereafter, according to whether the MPDR or MVDR
beamforming scheme is used, we let R0 denote either the
snapshot covariance Rx or the IPN covariance Ri+n. Let R̂,
R̂x, R̂i+n, and â denote the estimates of R0, Rx, Ri+n, and
a0, respectively.

B. Existing Works

To address the uncertainty in R̂ compared to its true value
R0, typical treatments include 1) eigenvalue thresholding,
2) diagonal loading, and 3) prior-knowledge embedding, 4)
worst-case optimization, and 5) IPN covariance reconstruction.

Eigenvalue Thresholding: Let (λ1, λ2, . . . , λN ) be eigenval-
ues of R̂ in descending order and Û contains eigenvectors.
Define R̂thr := ÛΛthrÛ

H and

Λthr :=


λ1

max{µλ1, λ2}
. . .

max{µλ1, λN}

 (6)

where 0 ≤ µ ≤ 1; NB: when µ = 0, R̂thr reduces to R̂. The
eigenvalue thresholding method to combat the uncertainty in
R̂ is to use R̂thr in beamforming [35, Eq. (36)], [8, Eq. (12)].

Diagonal Loading: The diagonal loading method to combat
the uncertainty in R̂ is to use R̂+ϵIN in beamforming, where
ϵ ≥ 0 is a scalar [30], [36]–[38]. Different tuning principles
for ϵ have been discussed, including main beam correction
and side lobe reduction [12], [30], asymptotic properties [36],
empirical mean-squared error (MSE) minimization [31], SoI
power estimation [37], etc. An interesting observation is that
some robust methods against the uncertainty in the assumed
steering vector â can be shown as the diagonal loading
method, where ϵ is determined by the uncertainty degree of â
[6], [7] or the sensitivity measure of the array [11], [29]. In
practice, however, the best tuning method for ϵ is still trial-
and-error because the best value under one criterion challenges
the optimality (or even satisfaction) under the other criterion.

Prior-Knowledge Embedding: The prior-knowledge embed-
ding method to combat the uncertainty in R̂ is to use αR̂+βR̄
in beamforming, for some weight coefficients α, β ≥ 0 and
prior knowledge R̄ of R0 [31]. It is believed that αR̂+ βR̄
can provide a better estimate than R̂ and R̄, in the sense of
smaller MSE. The coefficients α and β can be tuned using
empirical MSE minimization [31].

Worst-Case Optimization: Robust beamforming in the sense
of minimax optimization is formulated as [6], [8], [10], [17]

min
w

max
R∈UR

wHRw

s.t. min
a∈Ua

wHaaHw ≥ 1,
(7)

where UR and Ua are the uncertainty sets for R̂ and â, respec-
tively; R̂,R0 ∈ UR and â,a0 ∈ Ua. The philosophy behind
(7) is to optimize the worst-case performance and guarantee
the worst-case feasibility. When UR := {R : ∥R−R̂∥F ≤ ϵ1}
and Ua := {a : ∥a − â∥2 ≤ ϵ2} for some ϵ1, ϵ2 ≥ 0 where
∥ · ∥F and ∥ · ∥2 denote the matrix Frobenius norm and the
vector 2-norm, respectively, Problem (7) can be equivalently
transformed into [6, Eq. (29)], [10, Eq. (13)]

min
w

wH(R̂+ ϵ1IN )w

s.t. wHâ ≥ ϵ2∥w∥2 + 1,
(8)

which is tantamount to the diagonal loading method in terms
of the objective function. Problem (8) is equivalent, in the
sense of the same optimal cost, to

min
w

wH(R̂+ ϵ1IN )w

s.t. |wHâ| ≥ ϵ2∥w∥2 + 1,
(9)

because if w∗ is an optimal solution to (9), so is w∗ejφ for
any angle φ; j denotes the imaginary unit; note that wHw is
rotation-invariant. For other proposals of Ua, see, e.g., [50,
p. 871], [51, p. 2408], [8, Eq. (13)], [14, Eq. (25)], [39,
Eq. (10)], [10, p. 221]. Note that the robustification in terms
of R and a can be independently conducted; cf. (7). Under
the MVDR beamforming scheme, which occurs when the SoI
is not included in the snapshots or when the IPN covariance
Ri+n is estimated using Methods 3a) or 3b) [39], [40], [44],
another interpretation of (7) is to maximize the worst-case
SINR [9], [10]; i.e., maxw mina,R h(w,a,R); cf. (3).
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IPN Covariance Reconstruction: The motivation behind this
method is that the MVDR beamformer tends to be more
robust than the MPDR beamformer [5]. Hence, in the SoI-
contaminated case, a natural way is to estimate the IPN
covariance using snapshots [39], [40], [44], [45]. In the typical
treatment, the key step is to estimate the power spectra P (θ)
and then reconstruct the IPN covariance as follows

R̂i+n =

∫
Θ̄

P (θ)a0(θ)a
H
0 (θ)dθ, (10)

where Θ̄ is the angular sector that excludes the uncertainty re-
gion of the SoI’s DoA [39], [40]. In real-world operation, P (θ)
is estimated using the Capon spectra [39] or the maximum-
entropy spectra [40], and a0(θ) is estimated using â(θ).

C. Specific Research Questions
From the review of existing works in Subsection II-B, we

can see that the following questions have not been answered.
Q1) According to [11, p. 1365], [6, p. 313], [29, p. 742],

and our intuition, the well accepted notion of “robust
beamforming” means that the beamformer is insensitive
to possible perturbations in signal characteristics. How-
ever, how does the worst-case optimization method in (7)
reflect this notion in terms of the uncertainty in R̂?

Q2) Can we show that the existing eigenvalue thresholding
method and the prior-knowledge embedding method are
also tantamount to the worst-case optimization method
(7), as the diagonal loading method is?

Q3) In IPN covariance reconstruction, the resolution and bias
of spectra estimation is crucial, especially for suppressing
the closely located interferers. Therefore, how can we
incorporate the higher-resolution and lower-bias spectra
estimation methods, such as MUSIC, into IPN covariance
reconstruction?

The above three questions are representative particulariza-
tions of identified Issues I1)-I4) in Subsection I-B. Note that
Questions Q1) and Q2) apply to both MPDR and MVDR
beamforming.

III. DISTRIBUTIONALLY ROBUST ADAPTIVE
BEAMFORMING

This section studies the formalized theory of distributionally
robust (adaptive) beamforming, with a focus on combating the
uncertainties in the estimated snapshot or IPN covariances. In
particular, the concept of “distributional robustness” is quanti-
tatively defined and the countermeasure methods are proposed.
The concept of distributional robustness is noted because we
are working with the probabilistic uncertainties in snapshots
or IPN signals. This stochasticity feature fundamentally differs
from the fixed (albeit unknown) uncertainty in the assumed
steering vector â.

In view of potential errors in the assumed steering vector
â, we consider the feasible set of beamformers w as

W :=
{
w : min

a∈Ua

wHaaHw ≥ 1
}
, (11)

for a given uncertainty set Ua of the steering vector. However,
to focus on the uncertainty in R̂, the uncertainty in â is
minimally examined in this article.

A. Issue of Distributional Uncertainty

We revisit the distributional form of beamforming

min
w

wHEs∼P0
[ssH]w

s.t. wHa0 = 1,
(12)

where s denotes the snapshot x or the IPN signal under the
MPDR and MVDR beamforming, respectively, and P0 the
underlying true distribution of s. Since P0 is unavailable in
practice, the empirical distribution

P̂ :=
1

L

L∑
l=1

δsl
(13)

constructed using L collected samples {s1, s2, . . . , sL} can
serve as an estimate of P0 where δs denotes the point-mass
distribution centered at s. As a result, the sample-average
approximation (SAA) of (12) can be written as

min
w

wHEs∼P̂[ss
H]w

s.t. wHa0 = 1.
(14)

When Ua contains only a0,

min
w∈W

wHEs∼P0
[ssH]w (15)

reduces to (12) and

min
w∈W

wHEs∼P̂[ss
H]w (16)

reduces to (14). Since P̂ is distributionally uncertain compared
to P0, directly employing (16) as a surrogate of (15) is
questionable due to the issue of “overfitting on data”.

In beamforming, as only the second moments of P̂ and P0

are involved, for presentation simplicity, we directly work on
R̂ := Es∼P̂[ss

H] and R0 := Es∼P0
[ssH] whenever possible.

Only when technically necessary, we investigate P̂ and P0.
Another benefit of this treatment is that, under the MVDR
beamforming scheme for SoI-contaminated cases, the IPN
signal s cannot be directly observed but its covariance can
still be estimated [39], [45].

B. Definition of Distributional Robustness

Motivated by the philosophical notion of robustness, we
study the formal definitions of distributional robustness. We
begin with the concept of local distributional robustness.

Definition 1 (Locally Distributionally Robust Beamformer):
A beamformer w∗ is called (ϵ, k)-locally-robust on the uncer-
tainty set Bϵ(R0) := {R : d(R,R0) ≤ ϵ} if

w∗HRw∗ −wH
0R0w0 ≤ k, ∀R ∈ Bϵ(R0), (17)

where w0 ∈ minw∈W wHR0w is an optimal beamformer
associated with R0; d is a matrix similarity measure. The
smallest value k∗ of k ≥ 0 satisfying (17) is called the local
robustness measure of w∗ at ϵ. □

Definition 1 means that when the real-world operating
covariance R deviates from the underlying true R0, the
performance degradation w∗HRw∗ −wH

0R0w0 at the robust
beamformer w∗ is upper bounded by k and k∗. This formalism
straightforwardly reflects the notion of robustness, that is, the
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insensitivity in terms of perturbations in the covariance matrix.
Note that the smaller the value of k and k∗, the smaller the
performance degradation under uncertainties, and therefore,
the more robust the beamformer w∗ is.

Definition 1 is natural if the deviation level ϵ is known,
which, however, is not always the case in practice. Hence, the
concept of global distributional robustness can be motivated.

Definition 2 (Globally Distributionally Robust Beam-
former): A beamformer w∗ is called (τ, k)-globally-robust on
the whole space CN×N if

w∗HRw∗ − τ ≤ k · d(R,R0), ∀R ∈ CN×N , (18)

where τ is a prescribed cost threshold satisfying wH
0R0w0 ≤

τ < ∞. The smallest value k∗ of k ≥ 0 satisfying (18) is
called the global robustness measure of w∗ at τ . □

Definition 2 means that when the real-world operating
covariance R deviates from the underlying true R0, the perfor-
mance degradation w∗HRw∗−wH

0R0w0 at the robust beam-
former w∗ is upper bounded by τ −wH

0R0w0+k ·d(R,R0).
For modeling flexibility, we do not restrict τ ≡ wH

0R0w0.
Hereafter in this article, for presentation brevity, we short-

hand “distributional robustness” simply as “robustness”, if no
ambiguity is caused. In addition, we do not explicitly mention
whether the referred robustness is local or global; this can be
straightforwardly inferred from context.

C. Locally Distributionally Robust Beamforming

In line with Definition 1 and its motivation, we propose the
following robust beamforming formulation

(w∗, k∗) = argmin
w∈W,k

k

s.t. wHRw −wH
0R0w0 ≤ k, ∀R ∈ Bϵ(R0),

k ≥ 0,
(19)

which finds the locally robust beamformer w∗ and the local
robustness measure k∗. In practice where R0 is inaccessible,
we can solve (19) resorting to

min
w∈W,k

k

s.t. wHRw − ŵHR̂ŵ ≤ k, ∀R ∈ Bδ(R̂),
k ≥ 0,

(20)

where R̂ is an estimate of R0 and

ŵ ∈ min
w∈W

wHR̂w (21)

is an optimal beamformer associated with R̂. The intuition is
that if R0 ∈ Bδ(R̂) for some δ ≥ 0, then there exists ϵ ≥ 0
such that R̂ ∈ Bϵ(R0), and vice versa. As a result, R̂ is
feasible to (19), so is R0 to (20).

The theorem below reformulates Problems (19) and (20).
Theorem 1: Problem (19) is equivalent to

min
w∈W

max
R∈Bϵ(R0)

wHRw, (22)

in the sense of the following: if (w∗, k∗,R∗) solves (19), then
(w∗,R∗) solves (22); if (w∗,R∗) solves (22), by constructing

k∗ := w∗HR∗w∗ −wH
0R0w0, then (w∗, k∗,R∗) solves (19).

In addition, Problem (20) is equivalent to

min
w∈W

max
R∈Bδ(R̂)

wHRw. (23)

Proof: See Appendix A. □
Theorem 1 explains why minimax beamforming formulation

is robust in the sense of Definition 1, which casts new
insights into the robust beamforming community. Specifically,
Theorem 1 validates the rationale behind the worst-case op-
timization (7); see also [9, Eq. (9)], [17, Eq. (46)], and [10,
Eq. (10)]. This answers Question Q1) in Subsection II-C.

Considering practicality, we particularly focus on the solu-
tion of (23).

Theorem 2: If there exists R∗ ∈ Bδ(R̂) such that R∗ ⪰ R
for all R ∈ Bδ(R̂), then

min
w∈W

max
R∈Bδ(R̂)

wHRw = min
w∈W

wHR∗w.

Proof: This can be proven by contradiction. □
Specific applications of Theorem 2 are given as follows,

where eigenvalue thresholding, diagonal loading, regulariza-
tion, and prior-knowledge embedding are shown to be robust;
this answers Question Q2) in Subsection II-C.

Example 1 (Eigenvalue Thresholding): Consider

Bµ(R̂thr,µ) := {R : 0 ⪯ R ⪯ R̂thr,µ},

where R̂thr,µ is defined in (6). There exists R∗ := R̂thr,µ

such that R∗ ⪰ R for all R ∈ Bµ(R̂thr,µ). Hence, (23) is
particularized into

min
w∈W

wHR̂thr,µw, (24)

which is the eigenvalue-thresholding beamforming method [8,
Eq. (12)], [35]. □

Example 2 (Diagonal Loading): Consider

Bϵ1(R̂) := {R : R̂−ϵ1IN ⪯ R ⪯ R̂+ϵ1IN , R ⪰ 0}, (25)

for ϵ1 ≥ 0. There exists R∗ := R̂+ ϵ1IN such that R∗ ⪰ R
for all R ∈ Bϵ1(R̂). Hence, (23) is particularized into

min
w∈W

wH(R̂+ ϵ1IN )w, (26)

which is the diagonal-loading beamforming method. In addi-
tion, we consider

Ua := {a : ââH − ϵ2IN ⪯ aaH ⪯ ââH + ϵ2IN},

for ϵ2 ≥ 0. Similarly, the constraint in W [see (11)] can be
explicitly expressed as

wH(ââH − ϵ2IN )w ≥ 1, (27)

that is, W =
{
w : wHââHw ≥ ϵ2w

Hw + 1
}

. This is
reminiscent of existing robust beamforming formulation (9)
in the literature; however, they are slightly distinct because
square roots are involved in the constraint of (9). □

Example 2 gives the diagonal loading method another
robustness interpretation against the uncertainty in R̂ under
the scheme of worst-case optimization, which is technically
different from the results in [17, Eq. (46)], [10, Eq. (10)].
This new interpretation brings new insights to the community.
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The motivation of constructing Bϵ1(R̂) and Ua as in Example
2 is straightforward: we just assume that the matrix difference
R−R̂ is two-sided limited, so is the difference aaH−ââH. In
[17, Eq. (51)], (26) is called positive diagonal loading, while
(27) is negative diagonal loading. However, [17] obtains (26)
and (27) in a way technically different from our treatments as
in Theorem 2. Example 2 can be generalized as follows.

Example 3 (Regularization): Consider

Bϵ1(R̂) := {R : R̂− ϵ1C1 ⪯ R ⪯ R̂+ ϵ1C1, R ⪰ 0}

and

Ua := {a : ââH − ϵ2C2 ⪯ aaH ⪯ ââH + ϵ2C2},

for Hermitian matrices C1,C2 ⪰ 0 and ϵ1, ϵ2 ≥ 0. Problem
(23) is particularized into

min
w∈W

wH(R̂+ ϵ1C1)w, (28)

where W =
{
w : wHââHw ≥ ϵ2w

HC2w + 1
}

. This is a
general regularized beamforming formulation. □

Example 4 (Prior-Knowledge Embedding): Model (28) is
equivalent, in the sense of the same optimal beamformer(s),
to

min
w∈W

wH(αR̂+ βC1)w, (29)

where α := 1/(1 + ϵ1), β := ϵ1/(1 + ϵ1), and C1 can be
seen as prior knowledge of the unknown R0. This gives the
prior-knowledge embedding method [31]. □

In addition to Examples 1-4, another benefit of using
Theorem 2 can be seen in robust beamforming based on IPN
covariance reconstruction; see Section IV later. In short, we
can tailor the uncertainty set Bδ(R̂) to achieve high-resolution
power spectra estimation for better accuracy of IPN covariance
reconstruction, especially when interferers are close to the SoI.

D. Globally Distributionally Robust Beamforming

In line with Definition 2 and its motivation, the globally
robust beamforming problem can be proposed as

(w∗, k∗) = argmin
w∈W,k

k

s.t. wHRw − τ ≤ k · d(R,R0), ∀R ∈ CN×N ,
k ≥ 0,

(30)
which finds the globally robust beamformer w∗ and the global
robustness measure k∗. In real-world operation, (30) can be
solved resorting to

min
w∈W,k

k

s.t. wHRw − τ ≤ k · d(R, R̂), ∀R ∈ CN×N ,
k ≥ 0,

(31)

for
ŵHR̂ŵ ≤ τ < ∞. (32)

Note that R̂ is feasible to (30), so is R0 to (31). Considering
practicality, we particularly focus on the solution of (31). Let
C be a Hermitian invertible weight matrix. We study three
cases:

• d(R, R̂) := Tr[R− R̂]H[R− R̂].

• d(R, R̂) := wH Tr[R− R̂]H[R− R̂]w, ∀w ∈ CN .
• d(R, R̂) := wH Tr[R− R̂]HC−1[R− R̂]w, ∀w ∈ CN .

In all cases, d(R, R̂) is a similarity measure between R and
R̂: 1) d(R, R̂) ≥ 0 for every R and R̂; 2) d(R, R̂) = 0
if and only if R = R̂; 3) d(R, R̂) = d(R̂,R). We choose
d(R, R̂) in such ways just for technical tractability compared

to, e.g., d(R, R̂) := ∥R − R̂∥F =

√
Tr[R− R̂]H[R− R̂].

Under the above three constructions for d(R, R̂), the solution
to Problem (31) is given below.

Theorem 3: If d(R, R̂) := Tr[R − R̂]H[R − R̂], Problem
(31) is equivalent, in the sense of the same optimal beam-
former(s), to a quartically regularized beamforming problem

min
w∈W

wH

[
R̂+

wwH

4k

]
w = min

w∈W
wHR̂w +

1

4k
(wHw)2,

(33)
where k is chosen to let the above optimal objective value
equal to τ . If d(R, R̂) := wH Tr[R − R̂]H[R − R̂]w,
Problem (31) is equivalent, in the sense of the same optimal
beamformer(s), to a quadratically regularized (i.e., diagonal-
loading) beamforming problem

min
w∈W

wH

[
R̂+

1

4k
IN

]
w = min

w∈W
wHR̂w +

1

4k
wHw, (34)

where k is chosen to let the above optimal objective value
equal to τ . If d(R, R̂) := wH Tr[R − R̂]HC−1[R − R̂]w,
Problem (31) is equivalent, in the sense of the same optimal
beamformer(s), to a general quadratically regularized beam-
forming problem

min
w∈W

wH

[
R̂+

1

4k
C

]
w = min

w∈W
wHR̂w+

1

4k
wHCw, (35)

where k is chosen to let the above optimal objective value
equal to τ .

Proof: See Appendix B. □
Since minw wH[R̂+ wwH

4k ]w, minw wH[R̂+ 1
4kIN ]w, and

minw wH[R̂ + 1
4kC]w are continuous and monotonically

decreasing in k and they tend to infinity when k → 0, the
solutions to the three feasibility problems in Theorem 3 exist.
If we require τ > ŵHR̂ŵ, the solutions are guaranteed to be
finite (i.e., finite k’s exist). Note that when τ := ŵHR̂ŵ, we
have k = ∞ for all the three cases. An intuitive example of
Theorem 3 is given as follows.

Example 5 (Diagonal-Loading Beamforming): Let Ua :=
{a0}, that is, the steering vector is exactly known; cf. (11).
Then the optimal objective of (34) is a function of k, i.e.,

φ(k) :=
1

aH
0

[
R̂+ 1

4kIN

]−1

a0

.

Let
τ :=

1

aH
0 R̂

−1a0

+ t

where t ≥ 0 is a user-design objective-excess parameter; cf.
(32). Then, the optimal value of k is given by the zero of the
following equation

φ(k) =
1

aH
0

[
R̂+ 1

4kIN

]−1

a0

=
1

aH
0 R̂

−1a0

+ t = τ ;
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that is, k is uniquely determined by t. If t := 0, we have
k = ∞. □

As seen from Examples 2 and 5 and Theorem 3, diagonal
loading is a powerful technique for both locally robust beam-
forming and globally robust beamforming; this claim is true
at least under decent algorithmic constructions. The difference
is on which quantity the level of diagonal loading relies: the
scale ϵ1 of the uncertainty set in locally robust beamforming
(cf. Example 2) or the prescribed threshold τ in globally robust
beamforming (cf. Theorem 3 and Example 5).

E. Regularized Beamforming

Existing literature has well-identified regularized beamform-
ing as an efficient method to achieve robustness against limited
snapshot sizes [4], [13], which can also be seen from this
article’s results in (26), (28), (33), (34), and (35). Another
interpretation of regularized beamforming comes with penal-
izing the array sensitivity against array errors [11], [29]. To
be specific, the quantity wHw is used as a sensitivity measure
of the array; see [11, Section II] and [29, Section III-C] for
technical justifications. Intuitively speaking, when the steering
vector a(θ) deviates from its actual value a0(θ), the smaller
the value of wHw, the less impact this deviation can cause to
beamforming results; note that the derivative of array response
pattern wHa with respect to steering vector a is w; that is, if
the norm of w is small, the sensitivity of wHa to deviations
of a would be also limited.

In this subsection, we introduce the regularization technique
from a different perspective, i.e., worst-case robustness. We
start with the SAA beamforming (14) with the noise injection
technique [52, Section IV], [53, Eq. (13)] to achieve robust-
ness. Suppose that the signal s is contaminated by an unknown
zero-mean random error ξ1 (due to model uncertainties), and
the operating array steering vector is contaminated by an
unknown zero-mean random error ξ2 (due to, e.g., calibration
and pointing errors). The beamforming problem with noise
injection into s can be formulated as

min
w

wHE(s∼P̂, ξ1∼P1)
[(s+ ξ1)(s+ ξ1)

H]w

s.t. wHââHw −wHEξ2∼P2
[ξ2ξ

H
2 ]w ≥ 1,

(36)

where we suppose that the distributions of ξ1 and ξ2 are P1

and P2, respectively; the objective is due to ξ1-noise injection
into s, while the constraint is due to the facts â = a0 + ξ2
and wHa0a

H
0w ≥ 1. Assume that s is uncorrelated with ξ1.

Problem (36) can be rewritten as

min
w

wH[R̂+R1]w

s.t. wHââHw −wHR2w ≥ 1,
(37)

where R1 := Eξ1∼P1
[ξ1ξ

H
1 ] and R2 := Eξ2∼P2

[ξ2ξ
H
2 ]. In

practice where we have no knowledge about R1 and R2, we
can construct the uncertainty sets for R1 and R2 respectively
as follows:

R1 ∈ {R : 0 ⪯ R ⪯ ϵ1IN},
R2 ∈ {R : 0 ⪯ R ⪯ ϵ2IN}, (38)

for some ϵ1, ϵ2 ≥ 0. As a result, the robust counterpart of (37),
which optimizes the worst-case performance and guarantees
the worst-case feasibility, can be given as

min
w

max
R1

wH[R̂+R1]w

s.t. wHââHw −max
R2

wHR2w ≥ 1.
(39)

The solution to the above problem is given below.
Corollary 1 (of Theorem 2): Problem (39) is equivalent to

min
w

wH[R̂+ ϵ1IN ]w

s.t. wHââHw − ϵ2w
Hw ≥ 1,

(40)

which coincides with Example 2. □
Corollary 1 and (40) reveal an important law in robust beam-

former design: to achieve robustness is to add regularization.
This law applies to both the objective and the constraint. To
be specific, compared with Example 2 and Corollary 1, the
insight below is immediate.

Insight 1 (Robustness and Regularization): Consider the
SAA beamforming and its robust counterparts. The following
two statements are at the core.

• Solving minw wHR̂w by ŵ at nominal value R̂ does not
necessarily control true value ŵHR0ŵ evaluated at R0.
However, solving the regularized problem minw wH[R̂+
ϵ1IN ]w by ŵ′ can control true value ŵ′HR0ŵ

′ evaluated
at R0. This is because

wHR0w ≤ wH[R̂+ ϵ1IN ]w, ∀w.

Hence, minimizing the regularized objective means min-
imizing the upper bound of the true objective function.

• Requiring wHââHw ≥ 1 does not necessarily imply
wHa0a

H
0w ≥ 1. However, if we require the regularized

version, i.e., wHââHw − ϵ2w
Hw ≥ 1, then we can

guarantee that wHa0a
H
0w ≥ 1 because

wHa0a
H
0w ≥ wHââHw − ϵ2w

Hw ≥ 1, ∀w.

In short, for both objective and constraint, to achieve robust-
ness is to add regularization. □

The following corollary solves Problem (39) when the
uncertainty sets for R1 and R2 take other forms than (38).

Corollary 2 (of Corollary 1): If

R1 ∈ {R : 0 ⪯ R ⪯ ϵ1R̄1}
R2 ∈ {R : 0 ⪯ R ⪯ ϵ2R̄2}

for some R̄1, R̄2 ⪰ 0, then Problem (39) is equivalent to

min
w

wH[R̂+ ϵ1R̄1]w

s.t. wHââHw − ϵ2w
HR̄2w ≥ 1,

(41)

which is a general regularized beamforming formulation than
diagonal loading in Corollary 1; see also Example 3. □

The benefit of using Corollary 2 can be seen in robust beam-
forming based on IPN covariance reconstruction; see Section
IV later. In short, we can design a good regularizer matrix R̄1

to achieve high-resolution power spectra estimation for better
accuracy of IPN covariance reconstruction, especially when
interferers are close to the SoI.



9

F. Bayesian-Nonparametric Beamforming

In this subsection, we address the uncertainty in Problem
(16), compared to Problem (15), from the perspective of
Bayesian nonparametrics.

Let the uncertainty set for the distribution of s be P; for
example, P can be constructed as a distributional ball Bϵ(P̂)
centered at P̂. Since P̂ is not a reliable surrogate of P0, we
assign a probability distribution Q on the measurable space
(P,BP) where BP is the Borel σ-algebra on P . As a result,
the Bayesian-nonparametric counterpart of Problem (16) can
be given as

min
w∈W

wHEP∼QEs∼P[ss
H]w, (42)

where Q is called a second-order probability distribution and P
is a first-order one. Consider the measurable space (CN ,BCN )
where BCN denotes the Borel σ-algebra on CN . For every
event E ∈ BCN , the random probability distribution P is a
realization of Q and the quantity P(E) is a random variable
taking values on [0, 1]; the distribution of the random variable
P(E) is determined by Q. A desired Q should let P concentrate
around P0; the more concentrated, the better. Formulation (42)
enables assigning a distribution on the covariance matrix and
studying the following type of robust beamforming problem

min
w∈W

ER∼PR
wHRw,

where R := Es∼P[ss
H] and PR is its distribution; for instance,

see [54], [55].
In this article, we consider Q to be a Dirichlet process [56]

with base distribution P̄ ∈ P and parameter α ≥ 0. Here,
P̄ serves as a prior estimate of P0 (cf. the sample estimate
P̂). Using Q as a (P̄, α)-Dirichlet process means that for
any finite M -partition (Ξ1,Ξ2, . . . ,ΞM ) of CN , the random
vector (P(Ξ1),P(Ξ2), . . . ,P(ΞM )) is distributed according
to the Dirichlet distribution whose concentration parameter
vector is (αP̄(Ξ1), αP̄(Ξ2), . . . , αP̄(ΞM )). As a result of [57,
Chapter 3], Problem (42) can be equivalently transformed to

min
w∈W

wH

[
L

L+ α
R̂+

α

L+ α
R̄

]
w, (43)

where R̄ := Es∼P̄[ss
H] is the prior knowledge. Intuitively

speaking, in (43), we expect the combined probability dis-
tribution [ L

L+α P̂ + α
L+α P̄] to be a better estimate of P0 than

P̂ and P̄, so is [ L
L+αR̂+ α

L+αR̄] to R0 than R̂ and R̄.
Model (43) gives the prior-knowledge embedding method

[31] another rigorous interpretation (cf. Example 4), which
offers new insights to the community. In addition, it is equiv-
alent, in the sense of the same optimal beamformer(s), to

min
w∈W

wH[R̂+ ϵR̄]w = min
w∈W

wHR̂w + ϵwHR̄w, (44)

where ϵ := α/L. Model (44) is a regularized beamforming
problem; cf. Example 3 and Corollary 2.

A direct application of Models (43) and (44) is as follows.
Example 6 (Diagonal Loading): When we do not know

the prior knowledge R̄, we can set R̄ := IN . Problem (43)
becomes

min
w∈W

wH

[
L

L+ α
R̂+

α

L+ α
IN

]
w,

and Problem (44) turns into

min
w∈W

wH[R̂+ ϵIN ]w.

The latter is the diagonal-loading method. □
Since α ≥ 0 is a user-design parameter in real-world

operation, we can write (43) more compactly as

min
w∈W

wH[(1− β)R̂+ βR̄]w, (45)

through employing another user-design parameter β ∈ [0, 1].
The following insight presents the robustness of the Bayesian-
nonparametric beamforming model (45).

Insight 2 (Bayesian-Nonparametric Beamforming): Suppose
that under (R̄, β), the convex combination (1−β)R̂+βR̄ is
closer to R0 than R̂. Then, for ϵ1, ϵ2 ≥ 0 such that (1−β)R̂+
βR̄ ∈ Bϵ1(R0) and R̂ ∈ Bϵ2(R0), we have ϵ1 ≤ ϵ2. As a
result, if k1 solves Problem (19) under ϵ := ϵ1 and k2 solves
Problem (19) under ϵ := ϵ2, we have k1 ≤ k2. Therefore,
compared with the case using R̂, employing (1− β)R̂+ βR̄
as a surrogate of R0 would generate a more robust beamformer
that has a smaller robustness measure; see Definition 1. □

In addition to Insight 2, another benefit of using Bayesian-
nonparametric beamforming method (45) can be seen in robust
beamforming based on IPN covariance reconstruction; see
Section IV later. In short, we can design the prior matrix R̄
to achieve high-resolution power spectra estimation for better
accuracy of IPN covariance reconstruction, especially when
interferers are close to the SoI.

G. Unified Distributionally Robust Beamforming Framework

Based on the proposals of locally distributionally robust
beamforming (20), globally distributionally robust beam-
forming (31), regularized beamforming (41), and Bayesian-
nonparametric beamforming (45), the insight below summa-
rizes a unified distributionally robust beamforming framework.

Insight 3 (Unified Robust Beamforming Framework): A
robust beamforming formulation in the sense of Definition 1
should take, or can be transformed into, the following forms:

min
w∈W

wH[(1− β)R̂+ βR̄]w

or equivalently

min
w∈W

wHR̂w + ϵwHR̄w,

where β ∈ [0, 1] and ϵ := β/(1 − β) ≥ 0; the parameters
β, ϵ, and R̄ can be determined according to the principles of
locally robust beamforming (i.e., Theorems 1 and 2), globally
robust beamforming (i.e., Theorem 3), regularized beamform-
ing (i.e., Insight 1), or Bayesian-nonparametric beamforming
(i.e., Insight 2). □

For detailed motivations and explanations, also recall Ex-
amples 2, 3, 4, 5, and 6, Corollaries 1 and 2, and Model (45).

IV. ROBUSTNESS VIA HIGH-RESOLUTION SPECTRA
ESTIMATION AND IPN COVARIANCE RECONSTRUCTION

This section answers Question Q3) in Subsection II-C. Since
we aim to estimate the power spectra for IPN covariance
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reconstruction, in this section, R̂ refers to the snapshot co-
variance in which the SoI is present. This leads to the Capon
(i.e., MPDR) beamforming and Capon power spectra.

The Capon beamforming is believed to be a good-resolution
method for power spectra estimation [47]. However, when we
move to the robust Capon beamforming regime, the resolution
must be sacrificed. This can be straightforwardly seen from
the robust counterpart of the Capon constraint (11), i.e.,
mina(θ)∈Ua

wHa(θ)a(θ)Hw ≥ 1, for Ua := {a : ∥a −
a0(θ)∥ ≤ ϵ}. To be specific, the robust Capon beamforming
maintains a wider beam than the standard Capon beamform-
ing in direction θ to ensure that the array power response
wHa0(θ

′)a0(θ
′)Hw is sufficiently large for all directions θ′

close to θ. Note that a0(θ
′) ∈ Ua when |θ′ − θ| is small. In

using beamforming for power spectra estimation, the wider the
beam, the lower the resolution. Therefore, in the literature, the
trade-off between robustness and resolution in beamforming
for power spectra estimation largely exists. This dilemma
occurs even when the steering vector is exactly known but
the SAA-estimate R̂ deviates from its true value R0. This is
because robustness against array errors technically leads to the
diagonal-loading Capon beamforming [6], [7], [11], so does
robustness against the uncertainty in R̂ (see, e.g., Example
2). Therefore, whenever the diagonal loading technique is
applied to achieve robustness, the resolution for power spectra
estimation must deteriorate. In this section, we show how to
leverage the characteristics of the subspace methods, such as
MUSIC, to improve the resolution of power spectra estimation
in robust beamforming. This aim is technically realized by
designing an appropriate R̄ in Insight 3.

We start with the reformulation of the canonical MUSIC
method. Let

U0Σ0U
H
0 := R0 (46)

denote an eigenvalue decomposition of R0 and eigenvalues in
Σ0 be sorted in the descending order. We partition U0 and
Σ0 as follows:

Σ0 =

[
Σ0,s 0
0 Σ0,v

]
where Σ0,s ∈ CK×K and Σ0,v ∈ C(N−K)×(N−K), and

U0 = [U0,s, U0,v],

where the columns of U0,s ∈ CN×K span the signal-plus-
interference subspace and the columns of U0,v ∈ CN×(N−K)

span the noise subspace. Let

ÛΣ̂ÛH := R̂ (47)

denote an eigenvalue decomposition of R̂ and eigenvalues in
Σ̂ be sorted in the descending order. Similarly, Σ̂ is partitioned
into Σ̂s and Σ̂v , so is Û into Ûs and Ûv .

The MUSIC pseudo-spectra are defined as PM(θ) :=
1/[aH

0 (θ)U0,vU
H
0,va0(θ)], that is,

PM(θ) =
σ−2
n

aH
0 (θ) [U0,s, U0,v]

[
0

Σ−1
0,v

] [
UH

0,s

UH
0,v

]
a0(θ)

.

Note that Σ0,v = σ2
nIN−K where σ2

n denotes the power of
channel noise. Because the constant σ−2

n does not influence
the power pattern, we can ignore it and modify the MUSIC
pseudo-spectra to

PM(θ) =
1

aH
0 (θ) [U0,s, U0,v]

[
0

Σ−1
0,v

] [
UH

0,s

UH
0,v

]
a0(θ)

.

(48)
In contrast, the Capon power spectra, which solve Problem

(5), are given by P (θ) = 1/[aH
0 (θ)R

−1
0 a0(θ)], that is,

P (θ) =
1

aH
0 (θ) [U0,s, U0,v]

[
Σ−1

0,s

Σ−1
0,v

] [
UH

0,s

UH
0,v

]
a0(θ)

.

(49)
Comparing MUSIC pseudo-spectra in (48) with Capon

spectra in (49), we have the following key observation.
Insight 4: In Capon beamforming and its variants, from the

perspective of algorithm design, the key to high-resolution
power spectra estimation is to downweight the signal-plus-
interference subspace component aH

0 (θ)U0,sΣ
−1
0,sU

H
0,sa0(θ).

One way is to modify Σ−1
0,s in (49) to γΣ−1

0,s where 0 ≤ γ ≤ 1

is a small value. Another choice is to modify Σ−1
0,s in (49) to

[Σ0,s + γIK ]−1 where γ ≥ 0 is a large value. □

A. Robust Beamforming for High-Resolution Power Spectra
Estimation

Combining the principles of robustness in Insight 3 and high
resolution in Insight 4, the robust beamforming methods for
high-resolution power spectra estimation can be put forward.
Let

Γ := Û

[
δ1IK′

δ2IN−K′

]
ÛH, (50)

for δ1, δ2 ≥ 0 and K ≤ K ′ ≤ N − 1.
Consider the robust beamforming problem

min
w∈W

wH(R̂+ Γ)w. (51)

The above formulation can be seen as an unbalanced diagonal
loading (UDL) method, which generalizes the conventional
balanced diagonal loading (BDL) method where δ1 = δ2.
Note that for the purpose of high-resolution power spectra
estimation, K ′ can be any integer value in [K,N − 1];
see [47, Section V], [58, Section 4.5] for explanations and
justifications. Note also that for the purpose of robustness,
we only expect Γ to be positive semi-definite such that
wHR0w ≤ wHR̂w +wHΓw, for every w, regardless of the
value of K ′; cf. Insights 1 and 3.

Suppose Ua := {a0(θ)}; that is, the steering vector is
exactly known; cf. (11). We have the following observations:

• If δ1 = δ2 = 0, Model (51) gives the standard Capon
beamforming method.

• If δ1 = δ2 ̸= 0, Model (51) gives the conventional BDL
method; i.e., the two loading levels are the same.

• If δ1 ̸= δ2, Model (51) presents a UDL method; i.e., the
two loading levels are different.

• For any K ′ ∈ [K,N − 1], if δ1 → ∞, Model (51)
generates the high-resolution subspace pseudo-spectra
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[47, Section 5]. When K ′ = K, this subspace pseudo-
spectra become the MUSIC pseudo-spectra (48). When
K ′ = N − 1, this subspace pseudo-spectra become the
Pisarenko pseudo-spectra [58, p. 162].

Motivated by the preceding observations, we propose the fol-
lowing robust beamforming for high-resolution power spectra
estimation.

Method 1: Solve robust Capon beamforming (51) with Γ in
(50). To achieve high resolution for power spectral estimation,
let δ1 ≫ δ2 ≥ 0; to achieve robustness against the uncertainty
in R̂, let δ1, δ2 > 0. □

B. Robust Beamforming via IPN Covariance Reconstruction

Motivated by Insight 3 and Method 1, this subsection
summarizes the algorithm for robust beamforming based on
high-resolution power spectra estimation and IPN covariance
reconstruction; see Algorithm 1. In practice, since δ1 and δ2
in (50) are still user-design parameters, the employment of
tradeoff parameters ϵ1 in (41) and β in (45) are dispensable.
Therefore, in practice, we can set ϵ1 := 1 and β := 0.5.

Algorithm 1 Robust beamforming based on high-resolution
power spectra estimation and IPN covariance reconstruction
Basics: Insight 3, Insight 4, and Method 1.
Notes: In defining Γ, to ensure high resolution and sufficient
robustness, let δ1 ≫ δ2 > 0. In evaluating (10), the integration
is approximated using a summation; cf. [40, Eq. (20)].

Input: R̂, Γ, â, ϵ
// Step 1: High-Resolution Power Spectral Estimation
P (θ) = 1

âH(θ)[R̂+Γ]−1â(θ)
// Step 2: IPN Covariance Reconstruction

Use P (θ), â, and (10) to reconstruct R̂i+n

// Step 3: Robust Beamforming using Diagonal Loading
w∗ = (R̂i+n + ϵIN )−1â/[âH(R̂i+n + ϵIN )−1â]

Output: Robust beamformer w∗

In Step 1, the unbalanced diagonal loading operation does
not alter the main characteristics of the power spectrum (e.g.,
the locations of peaks), since it perturbs only the eigenvalues
while preserving the eigenvectors; cf. (50). Although eigen-
values affect the shape and amplitude scaling of the spec-
trum (thereby allowing control over resolution), the angular
selectivity in a power spectrum is primarily governed by the
eigenvectors [46]; for empirical illustration, see Fig. 3 in the
experiment section. Therefore, the directions of interferences
and their relative power levels, as reflected in the spectrum,
can be effectively identified. As a result, the IPN covariance
reconstruction in Step 2 remains valid and captures the essen-
tial statistical information of the IPN. Consequently, in Step 3,
the IPN components present in the snapshots can be effectively
suppressed.

The computational complexity of Algorithm 1 is as follows.
Remark 1 (Computationally Complexity): The computa-

tional complexity of Algorithm 1 is comparable to the method
in [39]. The differences between the two approaches are two-
fold: first, when estimating the power spectra, Algorithm 1

uses R̂+Γ, instead of R̂, to enhance resolution and robustness;
second, diagonal loading, i.e., R̂i+n + ϵIN , is applied to
ensure the robustness against the uncertainty in R̂i+n. The
two differences lead to additional O(N2) FLOPs (floating-
point operations). Hence, the main computational burden of
Algorithm 1 is at evaluating the integral in (10), which admits
O(N2S) FLOPs; S is the number of sampling points in Θ̄;
NB: S ≫ N . As a result, the overall complexity of Algorithm
1 is O(N2S), the same as the method in [39]. □

In addition, the following remark is practically instructive.
Remark 2 (Design W): Technically, addressing either the

uncertainty in the assumed steering vector or that in the
estimated IPN covariance leads to the regularization operation
(e.g., diagonal loading method); see [6], [7], [11] and Insight 3.
Therefore, in real-world operation, there is no need to consider
the uncertainty in the steering vector; that is, the uncertainty
set for the steering vector contains only a singleton:

Ua(θ) := {â(θ)}, ∀θ; (52)

see (11). This trick greatly reduces the operational complexity
of Algorithm 1. However, the robustness against the uncer-
tainties in the assumed steering vector and the estimated
IPN covariance remains. If general Ua are preferred, refer to
handling methods in, e.g., [6], [8], [10], [50], [51]. □

V. EXPERIMENTS

In this section, we consider a uniform linear array with
N = 10 and half-wavelength spacing [6], [39]. We show how
the unbalanced diagonal loading trick in Method 1 benefits the
suppression of closely located interferers. Our method comple-
ments the state of the art because existing studies assume that
interferers are sufficiently separated in their experiments; see,
e.g., [6], [39], [43]. We suppose that the SoI is at θ1 = −30◦,
and two strong interferers with interference-to-signal ratio
(ISR) of 10dB are located at −22◦ and 30◦. In IPN covariance
reconstruction, we let the integration interval in (10) be Θ̄ :=
[−90◦,−35◦]∪ [−25◦, 90◦] (cf. [39]); that is, the interferer at
θ2 = −22◦ is close to the boundary of the uncertainty region
[−35◦,−25◦] of the SoI. Throughout the experiments, we let
â(θ) := a0(θ) + ∆ where ∆ is a Gaussian random vector
with covariance 0.01IN ; for every Monte-Carlo episode, this
∆ changes its value. The output SINR performance of each
beamformer is averaged over 500 Monte-Carlo simulations.
All the source data and codes are available online at GitHub:
https://github.com/Spratm-Asleaf/Beamforming-UDL.

A. Experimental Verification of Robustness Principles

In this subsection, we provide empirical verifications of the
two robustness principles (i.e., Bayesian and Regularization)
in Insight 3. Without loss of generality for demonstration,
the MPDR (i.e., Capon) beamforming scheme is employed.
Accordingly, we refer to the first robustness formulation as
Capon-Bayesian, while the second as Capon-Regularization.
We sweep the value of β from 0 to 1 with step size 0.2,
and fix ϵ = 0.25 so that, for β = 0.2, we have ϵ = 0.25 =
0.2/0.8 = β/(1−β). The output SINR is plotted against input
signal-to-noise ratio (SNR). The number L of snapshots is 30.

https://github.com/Spratm-Asleaf/Beamforming-UDL
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(Other values of ϵ and L do not change the empirical claims in
this subsection.) For performance comparison, the following
two methods are also implemented:

• Optimal: The optimal beamformer where the true IPN co-
variance matrix Ri+n and the true steering vector a0(θ)
are exactly known. Note that, in real-world operations,
this method is not applicable.

• Capon: The Capon beamformer with estimated snapshot
covariance R̂ and assumed steering vector â(θ).

First, we assume that no effective prior information about the
true snapshot covariance R0 is available, so we let R̄ := IN .
Consequently, the second principle in Insight 3, i.e., the regu-
larization formulation minw∈W wHR̂w + ϵwHR̄w, specifies
the diagonal loading method with loading level ϵ = 0.25,
which provides the robustness against steering-vector uncer-
tainties and background white noises. The experimental results
are shown in Fig. 1, for which we have the following remarks:

• In the Bayesian non-parametric principle, convexly com-
bining the empirical estimate R̂ with the prior guess R̄
can potentially improve the robustness.

• In the regularization principle, employing the regularizer
R̄ can also potentially improve the robustness.

• When β = 0.0, Capon-Bayesian reduces to the Capon
method; when β = 0.2, Capon-Bayesian is equivalent to
Capon-Regularization because ϵ = 0.25 = β/(1 − β);
when β = 1.0, Capon-Bayesian reduces to the conven-
tional non-adaptive Bartlett beamformer.

• When β is well tuned (e.g., 0.4, 0.6, 0.8), Capon-Bayesian
outperforms Capon-Regularization with ϵ = 0.25.

Second, we suppose that the two interferers are known to be
located within [−24,−20] and [28, 32], respectively. This prior
information can be used to construct R̄. To be specific, letting
Θ̄1 and Θ̄2 be sampling subsets of [−24,−20] and [28, 32],
respectively, with step size of 0.1 degrees, we have

R̄ :=
∑

θi∈Θ̄1

â(θi)â
H(θj) +

∑
θj∈Θ̄2

â(θj)â
H(θi) + IN . (53)

The first two terms account for interference suppression,
whereas the identity matrix IN provides the robustness against
steering-vector uncertainties and background white noises (cf.
diagonal loading). Tradeoff coefficients for the three terms
can be introduced; however, for demonstration purposes, it
suffices to use (53) as an example. To show performance
improvement when effective prior information is incorporated,
in the Bayesian non-parametric principle, we let R̄ be defined
in (53), while in the regularization principle, we keep R̄ = IN
unchanged (as in Fig. 1). The experimental results are shown
in Fig. 2, for which we have the following remarks:

• In the Bayesian non-parametric formulation, effective
prior information indeed helps improve the ability of
interference suppression.

• In the Bayesian non-parametric formulation, overly em-
phasizing the prior information (with large β), on the
contrary, can deteriorate the performance because the
resulting beamformer loses adaptivity to snapshots. For
example, see performance degradation in Fig. 2(f) when
input SNR is small.
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(f) β = 1.0

Fig. 1. Empirical verifications of the robustness principles in Insight 3 when
no effective prior information about interferers is assumed.

In summary, both robustness formulations in Insight 3 can
provide significant robustness, especially when effective prior
information can be given. Although the two formulations are
developed from different motivations and techniques, given
the same R̄, they are equivalent if ϵ = β/(1 − β). Due to
this equivalence, we do not explicitly differentiate the two
formulations in later experiments; instead, we just leverage
the regularization formulation.

B. Experimental Verification of Algorithm 1

In this subsection, we study the empirical performance of
the proposed Algorithm 1. In addition to the previously defined
Optimal and Capon, the following state-of-the-art methods are
implemented in the experiments for performance comparison:

• IPN: Robust beamforming based on IPN covariance re-
construction [39].

• IPN-DL: Diagonally-loaded robust beamforming based
on IPN covariance reconstruction. Note that the estima-
tion of IPN covariance can never be exact in practice.
Hence, robust methods such as diagonal loading have
the potential to further improve the performance of the
approach in [39].

• IPN-UDL: Algorithm 1 of this article. IPN-DL is a
special case of IPN-UDL for δ1 = δ2 = 0.

• IPN-MaxEnt: Robust beamforming based on maximum-
entropy (MaxEnt) spectra estimation and IPN covariance
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(b) β = 0.2
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(c) β = 0.4
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(e) β = 0.8

-20 -10 0 10 20 30
Input SNR (dB)

-10

0

10

20

30

40

O
ut

pu
t S

IN
R

 (
dB

)

Optimal
Capon-Bayesian
Capon
Capon-Regularization

(f) β = 1.0

Fig. 2. Empirical verifications of the robustness principles in Insight 3 when
effective prior location information about interferers is assumed.

reconstruction [40]. Although the MaxEnt spectra tend to
have better resolution than the Capon spectra, the biases
of the MaxEnt spectra can be large [46, Fig. 4]. Hence,
the performance advantage of the IPN-MaxEnt method
[40] over the IPN method [39] may significantly vary
across different scenarios or different Monte-Carlo trials.

• Capon-DL: Diagonally-loaded Capon beamformer.
The first four methods are under the MVDR beamforming
scheme, while the last method is under the MPDR beamform-
ing scheme. We do not study other existing methods because
they are greatly dominated by IPN [39] and IPN-MaxEnt [40].
Capon and Capon-DL are kept just for the illustration of the
theoretical analyses in this article.

1) Power Spectra Estimation: The power spectra estimated
by Capon beamforming, Capon beamforming with diagonal
loading, and Capon beamforming with unbalanced diagonal
loading are shown in Fig. 3. Note that in evaluating the
resolution of a power spectra estimation method, all emitting
signals should have the same energy; that is, the interference-
to-signal ratio should be 0dB [47, p. 1020]. Fig. 3 suggests
that the diagonal loading operation indeed widens the beams,
and hence, deteriorates the resolution. This experimental ob-
servation agrees with the theoretical analyses in the beginning
of Section IV. However, the unbalanced diagonal loading
trick can improve the resolution in power spectra estimation,
aligning with the motivation in Insight 4 and Method 1. Note
that the larger the degree of unbalancedness is (i.e., the larger

the value of δ1 when fixing δ2), the better the resolution is.
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Fig. 3. Power spectra of Capon beamforming, Capon beamforming with
diagonal loading (DL), and Capon beamforming with Unbalanced DL (UDL).
In this scenario, ISR = 0dB and SNR = 25dB; the number of snapshots is 30;
in Capon-DL, the DL parameter is ϵ = 0.01; in Capon-UDL, δ2 = 0.0 (cf.
Insight 4).

2) Output SINR: To compare output SINR performances,
all beamforming methods are empirically tuned to achieve
their best operational performances in the investigated scenar-
ios. To be specific, in IPN-DL, the diagonal loading parameter
is ϵ = 0.01; in IPN-UDL, K ′ = K = 3, δ1 = 10, and
δ2 = ϵ = 0.01 (NB: large δ1 for high-resolution and nonzero
δ2 for robustness; see Method 1); in Capon-DL, the diagonal
loading parameter is ϵ = 0.1.

The output SINR performance of beamformers is shown in
Fig. 4. When plotting against the input SNR, the number of
snapshots is set to 30 or 80; when plotting against the number
of snapshots, the input SNR is set to 10dB or 25dB.

Fig. 4 outlines the following observations.
• For both IPN and Capon, diagonal loading has the poten-

tial to improve their robustness, especially in the regime
of small to moderate SNRs. This is because the IPN
covariance in the MVDR beamforming and the snapshot
covariance in the MPDR beamforming can never be
exactly estimated. Therefore, according to the analyses in
Section III (e.g., Insights 1, 2, and 3), robust beamforming
methods tend to outperform their nominal counterparts.

• IPN-UDL significantly outperforms the other beamform-
ers due to its high-resolution and low-bias in power
spectra estimation; cf. Fig. 3.

3) Supplementary Experiments: In the experiment associ-
ated with Fig. 4, we have assumed that K ′ = K = 3. Below,
we relax this assumption and admit that K ′ may not be exactly
known. We set K ′ = 5 or K ′ = 7. The corresponding results
are given in Fig. 5. As we can see, the proposed IPN-UDL
method is not sensitive to the value of K ′, as long as it
is reasonably set in practice. However, when K ′ = 7, the
performance indeed slightly degrades compared to that for
K ′ = 5 and K ′ = K = 3. This experimental observation
agrees with our theoretical analyses in Subsection IV-A.

When the interference-to-signal ratio is 0dB and the loca-
tions of interferers are at θ2 = 0◦ and θ3 = 30◦, the output
SINR performance against the input SNR is shown in Fig. 6.
In this case, the interferers are far away from the SoI and the
interference energies are equal to that of the SoI. Therefore,
as reported in [39], the IPN method is indeed a powerful tool
that can achieve nearly optimal performance in both low and
high SNR regimes.
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Fig. 4. The output SINR performance of beamformers against input SNR
and snapshots. In (a), the number of snapshots is 30; in (c), the number of
snapshots is 80; in (e), the SNR is 10dB; in (g), the SNR is 25dB.
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(a) K′ = 5
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(b) K′ = 7

Fig. 5. The output SINR performance of beamformers against input SNR
when K′ = 5 and K′ = 7. The number of snapshots is 30.
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(a) Far and Weak Interferers
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Fig. 6. The output SINR performance of beamformers against input SNR (far
and weak interferers). The ISR is 0dB and the number of snapshots is 30.

VI. CONCLUSIONS

To solve the problems in Subsection I-B and answer the
questions in Subsection II-C, this article comprehensively
studies distributionally robust beamforming, including the con-
ceptual system, theoretical analysis, and algorithmic design.
By addressing uncertainties in snapshot and IPN covariance
matrices, a unified framework for distributionally robust beam-
forming that generalizes several existing approaches (e.g., di-
agonal loading, eigenvalue thresholding, and prior-knowledge
embedding) is presented (see Insight 3), which draws insights
from four technical approaches: locally robust, globally robust,
regularized, and Bayesian-nonparametric beamforming. Our
theoretical analyses demonstrate the equivalence among the
four methods, and show that integrating them with subspace
methods using the unbalanced diagonal-loading trick (50) can
enhance the resolution of power spectra (and DoA) estimation.
Such high resolution can improve the reconstruction accuracy
of IPN covariances, and hence, improve the SINR performance
when interferers are located close to the SoI.

APPENDIX A
PROOF OF THEOREM 1

Proof: First, Problem (19) is equivalent to

min
w∈W

min
k

k

s.t. max
R∈Bϵ(R0)

wHRw −wH
0R0w0 ≤ k,

k ≥ 0.

By eliminating k, the above display is equivalent to

min
w∈W

max
R∈Bϵ(R0)

wHRw −wH
0R0w0,

which is further equivalent to (22). Note that maxR wHRw−
wH

0R0w0 ≥ 0 because R0 ∈ Bϵ(R0). The second statement
can be similarly proven. □

APPENDIX B
PROOF OF THEOREM 3

Proof: If d(R, R̂) := Tr[R− R̂]H[R− R̂], Problem (31)
can be written as

min
w∈W,k

k

s.t. max
R∈CN×N

wHRw − kTr[R− R̂]H[R− R̂] ≤ τ.

k ≥ 0.
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In terms of R, this is a quadratic convex and unconstrained
optimization, and therefore, the first-order optimality condition
2k(R− R̂) = wwH gives the globally optimal solution R =
R̂+wwH/(2k). Hence, the above optimization is equivalent
to

min
w∈W,k

k

s.t. wH

[
R̂+

wwH

4k

]
w ≤ τ

k ≥ 0.

Because wH
[
R̂+ wwH

4k

]
w is continuous and monotonically

decreasing in k for every w ∈ W , the above optimization is
further equivalent to

min
k

k

s.t. min
w∈W

wH

[
R̂+

wwH

4k

]
w ≤ τ

k ≥ 0.

Since minw∈W wH
[
R̂+ wwH

4k

]
w is also continuous and

monotonically decreasing in k and it tends to infinity when
k → 0, the above optimization is equivalent to

find k

s.t. min
w∈W

wH

[
R̂+

wwH

4k

]
w = τ

k ≥ 0.

This proves the first part of the theorem. The second part is
technically similar; just note that

d(R, R̂) := wH Tr[R− R̂]H[R− R̂]w

= wHwTr[R− R̂]H[R− R̂],

and therefore, the first-order optimality condition 2kwHw(R−
R̂) = wwH gives the globally optimal solution

R = R̂+wwH/(2kwHw).

The third part is also technically similar; just note that

d(R, R̂) := wH Tr[R− R̂]HC−1[R− R̂]w

= wHwTr[R− R̂]HC−1[R− R̂],

and therefore, the first-order optimality condition
2kwHwC−1(R − R̂) = wwH gives the globally optimal
solution

R = R̂+CwwH/(2kwHw).

This completes the proof. □
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