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Online Supplementary Materials

This document contains appendices to the paper, including:
• Extensive discussions on Model (2); see Appendix A;
• Proofs of all lemmas, theorems, and propositions;
• An intuitive explanation of Method 1; see Appendix I;
• The specifics of how the simulations in Section V are

conducted; see Appendix Q.

APPENDIX A
EXTENSIONS OF MODEL (2)

For the signal model Y = HX + W in (1), it can be
written as

Y = S + (HX − S) +W.

To recover S from Y, we aim to minimize the interference
signals HX − S over waveforms X . This is another reason
to minimize MUI energy ∥HX − S∥2F as in (2). Below we
discuss the case of multi-antenna users and the case of multi-
carrier.

• Multi-Antenna Case. Suppose that we have K downlink
users and each user is equipment with R receive antennas.
Then, the channel matrix of each user is Hk ∈ CR×N

for every k ∈ [K], where N is the number of transmit
antennas at the base station. As a result, for each user k,
the base-band signal model is Yk = HkX+Wk, where
X ∈ CN×L is the transmitted waveform and L is the
frame length. By constructing Y , H , and W as

Y :=


Y1

Y2

...
YK

 , H :=


H1

H2

...
HK

 , W :=


W1

W2

...
WK

 ,
the integrated base-band signal model Y = HX + W
can be obtained. Note that in this case, ∥HX − S∥2F
no longer physically means the multi-user interference
(MUI) energy. However, as in (2), minimizing ∥HX −
S∥2F with respect to X is still the technical focus to
improve communication performance (i.e., to reduce the
restoration error of the information matrix S).

• Multi-Carrier Case. Suppose that we have R sub-
carriers and for each sub-carrier r ∈ [R], the base-band
signal model is Yr = HrXr+Wr, where Yr ∈ CK×L,
Hr ∈ CK×N , Xr ∈ CN×L, and Wr ∈ CK×L; K is the
number of downlink single-antenna users, L is the frame
length, and N is the number of transmit antennas at the
base station. Since every sub-carrier has an independent
base-band signal model, all signal processing operations
can be applied separately for every base-band model
indexed by r ∈ [R].

APPENDIX B
PROOF OF LEMMA 1

Proof: The first inequality in the lemma is due to the weak
min-max property (also known as the min-max inequality),
which is unconditionally true for any ϕ, H, and X . The second
inequality is due to the feasibility of the solution X∗ in X .
This completes the proof. □

APPENDIX C
PROOF OF LEMMA 2

Proof: We have

max
H

ϕ(H, X̄)−max
H

min
X

ϕ(H,X)

= max
H

ϕ(H, X̄)− ϕ(H̄, X̄) + min
X

ϕ(H̄,X)

−max
H

min
X

ϕ(H,X)

≤
∣∣max

H
ϕ(H, X̄)− ϕ(H̄, X̄)

∣∣+∣∣max
H

min
X

ϕ(H,X)−min
X

ϕ(H̄,X)
∣∣

≤ max
H

∣∣ϕ(H, X̄)− ϕ(H̄, X̄)
∣∣+

max
H

∣∣min
X

ϕ(H,X)−min
X

ϕ(H̄,X)
∣∣

≤ L2 ·max
H
∥H − H̄∥+ L1 ·max

H
∥H − H̄∥

= (L1 + L2) · θ.

This completes the proof. □

APPENDIX D
PROOF OF THEOREM 1

Proof: First, we consider the max-min counterpart of (9):

max
H

min
X

∥HX − S∥2F

s.t.
1

L
XXH = R,

∥H − H̄∥ ≤ θ.

(55)

For every feasible H , the inner sub-problem minX∈X ∥HX−
S∥2F is solved by

X∗
H =

√
L · F ·UIN×LV

H,

where UΣV H SVD
= F HHHS and IN×L := [IN ,0N×(L−N)];

the N × (L −N) zero matrix is denoted by 0N×(L−N); see
[20, Eq. (15)]. Note that the optimal solution X∗

H depends on
H , and X∗

H may not be unique given H . Plugging in X∗
H

back to (55) yields (28).
Second, according to Lemma 1 and Condition (27), the

strong min-max property holds, that is,

min
X∈X

max
H∈H

∥HX − S∥2F = max
H∈H

min
X∈X

∥HX − S∥2F
= max

H∈H
∥
√
L ·H · F ·UIN×LV

H − S∥2F .
(56)

This completes the proof. □

APPENDIX E
PROOF OF PROPOSITION 1

One may verify that it is difficult to prove the continuity
of f directly using the definition in (30) because the SVD
of a matrix might not be unique; specifically, given H , there
may exist multiple Us and V s such that UΣV H = F HHHS.
The complication arises when U and V correspond to zero
singular value(s) in Σ. We, therefore, investigate the continuity
of f from its original definition.

Proof: Recall that f(H) := minX∈X ∥HX−S∥2F where
X := {X : XXH = LR}. First, note that for every X ∈ X
and every H1,H2 ∈ H, there exists an upper bound 0 < B1 <
∞ such that ∥H1X − S∥F + ∥H2X − S∥F ≤ B1. A loose
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choice can be B1 := 2
√
LPT · (∥H̄∥F +Bθ)+ 2∥S∥F where

0 < B <∞ is a real-valued constant such that ∥H1−H̄∥F ≤
B∥H1 − H̄∥; the existence of B is guaranteed due to the
equivalence of norms on a finite-dimensional linear space. Just
note that |∥H1∥F −∥H̄∥F | ≤ ∥H1−H̄∥F ≤ B∥H1−H̄∥ ≤
Bθ. The same argument also holds for H2. Hence, for every
H1,H2 ∈ H, we have

|f(H1)− f(H2)|
=

∣∣∣ min
X∈X

∥H1X − S∥2F − min
X∈X

∥H2X − S∥2F
∣∣∣

≤ max
X∈X

∣∣∣∥H1X − S∥2F − ∥H2X − S∥2F
∣∣∣

= max
X∈X

∣∣∣(∥H1X − S∥F + ∥H2X − S∥F
)
·(

∥H1X − S∥F − ∥H2X − S∥F
)∣∣∣

≤ max
X∈X

∣∣∣∥H1X − S∥F + ∥H2X − S∥F
∣∣∣·∣∣∣∥H1X − S∥F − ∥H2X − S∥F
∣∣∣

≤ B1 · max
X∈X

∥∥∥H1X −H2X
∥∥∥
F

≤ B1 ·
∥∥∥H1 −H2

∥∥∥
F
· max
X∈X

∥∥∥X∥∥∥
F

= B1

√
LPT · ∥H1 −H2∥F

≤ B1

√
LPT ·B∥H1 −H2∥.

Note that ∥X∥F =
√
TrXHX =

√
L · TrR =

√
LPT. □

APPENDIX F
PROOF OF PROPOSITION 2

Proof: The non-convexity and non-concavity of the ob-
jective function f(H) = minX: XXH=LR ∥HX − S∥2F can
be verified through the definitions of convexity and concavity
by constructing counterexamples, completing the proof. □

The example below specifically justifies the claim above.
Example 1: Let the nominal channel be H̄ := 0.9 + 0.5j,

ϵ := 0.05, R := 1, and S := 1 + 1j. Suppose that H1 and H2

are generated according to the following formulas:

H1 = H̄ + ϵ ·∆1,
H2 = H̄ + ϵ ·∆2,

where ∆1 and ∆2 are mutually-independent standard complex
Gaussian variables. One may verify that f(0.5H1+0.5H2) ≤
0.5f(H1) + 0.5f(H2) for some realizations of H1 and H2,
while f(0.5H1 + 0.5H2) ≥ 0.5f(H1) + 0.5f(H2) for other
realizations. Therefore, f is neither concave nor convex. □

APPENDIX G
PROOF OF PROPOSITION 3

Proof: The upper bound is obtained by plugging X̄ into
the optimization problem f(H) := minX: XXH=LR ∥HX −
S∥2F because X̄ is a feasible solution. The lower bound is
obtained by the reverse triangle inequality, i.e., ∥HX−S∥F ≥
|∥HX∥F − ∥S∥F |; note that ∥HX∥F =

√
LTr[HHHR]

because XXH = LR. The upper bound is positive-definite
quadratic (thus convex) in vec(H) because X̄X̄H = LR and
R is positive definite. Since at the center H̄ of H we have
f(H̄) = f(H̄), the upper bound is tight. Also, the reverse
triangle inequality is tight, and therefore, the lower bound is

tight. The third claim is obvious. We show the uniform bound
in the fourth claim below. We have

f̄(H)− f(H) = f̄(H)− f̄(H̄) + f(H̄)− f(H)
≤ |f̄(H)− f̄(H̄)|+ |f(H̄)− f(H)|
≤ Lf∥H − H̄∥+ Lf∥H − H̄∥
≤ 2Lf · θ.

This completes the proof. □

APPENDIX H
PROOF OF PROPOSITION 4

Proof: The Hessian of the objective function in terms of
vec(H) is

L((FA)T ⊗ IK)H((FA)T ⊗ IK)
= L{[(FA)T]H ⊗ IH

K}{(FA)T ⊗ IK}
= L[(FA)T]H(FA)T ⊗ IH

KIK
= L[(FA)(FA)H]T ⊗ IH

KIK
= LRT ⊗ IK ≻ 0,

because the beampattern-inducing matrix R is positive defi-
nite. Hence, the objective function of (34) is positive definite
in vec(H), and therefore, convex in vec(H). The convexity
of the objective function in terms of vec(A) can be shown
in a similar way: just note that the objective function can
only be shown to be positive semi-definite because the Hessian
L(IL⊗HF )H(IL⊗HF ) is not necessarily positive definite.

The feasible region of H is convex because the norm
constraint is convex and the equality constraint is linear. The
feasible region of A is convex because it is built by a linear
equality constraint. This completes the proof. □

APPENDIX I
INTUITIVE UNDERSTANDING OF SOLUTION METHOD 1

Motivated by Lemma 1 and Condition (27), we start with
employing the upper bound f(H) in Proposition 3 because
f(H) is close to f(H) if the radius θ of the uncertainty
set H is small; recall from Subsection III-C that the radius of
uncertainty set should be controlled to small. The other reason
to employ X̄ and f(H) is that X̄ exists for any specified
uncertainty set H with any radius θ ≥ 0 because H is centered
at H̄ .

Step 1. Maximize the upper bound f(H) to obtain H∗:

H∗ = argmax
H∈H

∥HX̄ − S∥2F .

Interpretation. Step 1 gives a feasible approximation solution
(X̄,H∗) to Problem (28), and therefore Problem (9), in the
sense of Fact 1. To be specific, we have
a) Bound of the Truly Optimal Cost and the True Cost:

min
X∈X

∥H0X − S∥2F ≤ ∥H0X̄ − S∥2F ≤ ∥H∗X̄ − S∥2F ;

b) Bound of the Nominally Optimal Cost:

min
X∈X

∥H̄X − S∥2F = ∥H̄X̄ − S∥2F ≤ ∥H∗X̄ − S∥2F ;

where the nominally optimal solution X̄ :=
√
LFŪIN×LV̄

H

solves the nominal waveform design problem
minX∈X ∥H̄X − S∥2F and X = {X : XXH = LR}.
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However, maximizing the upper-bound f(H) gives an
extremely conservative solution. Specifically, the robust
cost ∥H∗X̄ − S∥2F would be overly large than the
true cost ∥H0X̄ − S∥2F and the truly optimal cost
minX∈X ∥H0X − S∥2F . Hence, a refinement is needed.

Step 2. Refine the robust cost ∥H∗X̄ − S∥2F : i.e.,

X∗ = argmin
X∈X

∥H∗X − S∥2F .

Consequence. However, the resulting cost ∥H∗X∗ − S∥2F
cannot be guaranteed to upper bound the truly optimal cost,
the true cost, and the nominally optimal cost. To be specific,
it is unnecessary to have
a) Bound of the Truly Optimal Cost and the True Cost:

min
X∈X

∥H0X−S∥2F ≤ ∥H0X
∗−S∥2F

?
≤ ∥H∗X∗−S∥2F .

b) Bound of the Nominally Optimal Cost:

min
X∈X

∥H̄X − S∥2F = ∥H̄X̄ − S∥2F
?
≤ ∥H∗X∗ − S∥2F .

(Note that H∗ is obtained by the maximization at X̄ .) Thus,
we propose a remedy strategy.

Step 3. Design a mechanism to let X∗ = X̄ .
Interpretation. If it technically holds that X∗ = X̄ (or X∗ ≈
X̄), then the conservativeness of the solution (H∗, X̄) will
be controlled, and equivalently, the feasibility of the solution
(H∗,X∗) in the sense of Fact 1 will be guaranteed.

The three algorithmic steps above provide an intuitive
understanding of Method 1.

APPENDIX J
PROOF OF LEMMA 3

Proof: We have (Γ + Θj)(a + bj) = (Γa − Θb) +
(Θa + Γb)j. Hence, the stacking scheme to construct real
quantities from complex quantities is given in the statement
of the lemma. This completes the proof. □

APPENDIX K
PROOF OF LEMMA 4

Proof: According to Proposition 4, we immediately have
CTC ≻ 0, and therefore, p(h) is positive definite in h. In
addition, we have p(h)− µ

2h
Th = hT(CTC − µ

2 I2KN )h−
2sTCh + sTs, where µ > 0 is a positive number. Since
CTC ≻ 0, there exist µ > 0 such that CTC − µ

2 I2KN ⪰ 0.
As a result, the function p(h)−µ

2h
Th can be a convex function

for some µ > 0, which means that the objective function p(h)
of (41) is strongly convex. □

APPENDIX L
PROOF OF PROPOSITION 5

Proof: According to [49, Thm. 1], a point y is a globally
optimal solution to (41) if and only if ⟨∇p(y), h− y⟩ ≤ 0,
for every h such that ∥h − h̄∥ ≤ θ, where ∇p(y) de-
notes the gradient of p evaluated at y. Therefore, if we
have maxy∈Y maxh:∥h−h̄∥≤θ ⟨∇p(y), h− y⟩ ≤ 0, for some
dedicated Y , then every y that solves the above optimization
is a global maximum of (41). This proposition, which is

adapted from [49, Algo. 1] for Problem (41), formalizes
the above intuition. The global optimality and convergence
are therefore guaranteed by [49, Thm. 4]. For rigorous and
complete technical proof, see [49]; just note that in (42), the
equality constraint can be changed to its convex inequality
counterpart because the optima of linear objective functions
lie on the boundary of feasible regions. □

APPENDIX M
PROOF OF PROPOSITION 6

Proof: Since CTC is positive definite, the invertible M
exists; see Appendix K. Problem (42) is equivalent to

yk = argmax
y∈R2KN

(hT
k−1C

TC − sTC) · y

s.t. ∥My −M−TCTs∥2 = γ.

The above display is further equivalent to

max
z∈R2KN

(hT
k−1C

TC − sTC)M−1 · (γz +M−TCTs),

s.t. ∥z∥2 = 1.

Due to Cauchy–Schwarz inequality, the maximum is

z∗ =
M−T(CTChk−1 −CTs)

∥M−T(CTChk−1 −CTs)∥2
.

Then, a maximum of (42) is y∗ = M−1 · (γz∗+M−TCTs).
This completes the proof. □

APPENDIX N
PROOF OF PROPOSITION 7

Proof: Problem (43) is equivalent to

max
z∈R2KN

(yT
kC

TC − sTC) · (θz + h̄), s.t. ∥z∥2 = 1.

Due to Cauchy–Schwarz inequality, the maximum is

z∗ =
CTCyk −CTs

∥CTCyk −CTs∥2
.

As a result, a maximum of (43) is h∗ = θz∗ + h̄. □

APPENDIX O
PROOF OF PROPOSITION 8

Proof: In terms of U , we can rewrite (39) as

min
U
∥UA1 −B1∥2F , s.t. UUH = IN , (57)

where A1 and B1 are defined in Proposition 8. Problem (57) is
a standard orthogonal Procrustes problem whose closed-form
solution is given in Proposition 8; see technical details in [50].

In terms of V , we can rewrite (39) as

min
V
∥V A2 −B2∥2F , s.t. V V H = IL, (58)

where A2 and B2 are defined in Proposition 8. Problem (58) is
a standard orthogonal Procrustes problem whose closed-form
solution is given in Proposition 8; see technical details in [50].

In terms of Σ, Problem (39) is a positive-definite-quadratic
convex program. Note that the space ΩN×L of the matrices
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with diagonal, non-negative, and real entries is convex. The
gradient of the objective function of (39) with respect to Σ is

2UH(UΣV H − F HH∗HS)V = 2Σ− 2UHF HH∗HSV .

Therefore, the optimal solution is given by the projected point
of UHF HH∗HSV onto ΩN×L.

The convergence proof of the iteration process is straight-
forward. We rewrite (39) in shorthand as

min
U ,Σ,V

ψ(U ,Σ,V ),

where the constraints of the variables (U ,Σ,V ) are implicitly
defined by (39). Let (U0,Σ0,V 0) denote the initial values of
the variables and (U r,Σr,V r) the values at the rth iteration.
Following the defined iteration process in Proposition 8, we
have

ψ(U0,Σ0,V 0) ≥ ψ(U1,Σ0,V 0)
≥ ψ(U1,Σ0,V 1)
≥ ψ(U1,Σ1,V 1)
...
≥ ψ(U r,Σr,V r),

for every r ≥ 1. Therefore, the sequence {ψ(U r,Σr,V r)},
which is indexed by r, is decreasing as r increases. Since
ψ(U ,Σ,V ) ≥ 0 for every feasible (U ,Σ,V ), according to
the monotone convergence theorem, ψ(U r,Σr,V r) monoton-
ically converges to a non-negative value as r goes to infinity.

Note that (U r,Σr,V r) is not guaranteed to converge
because at the rth iteration, the values of (U r,Σr,V r) may
not be unique. This completes the proof. □

APPENDIX P
PROOF OF PROPOSITION 10

Proof: According to Lemma 1, the upper bound function
ḡ(H) is straightforward to obtain because X̄ is a feasible
solution in X .

The Lipschitz continuity of g is shown as follows. For every
H1,H2 ∈ H, we have

|g(H1)− g(H2)|
=

∣∣∣ min
X∈X

ρ∥H1X − S∥2F + (1− ρ)∥X −Xs∥2F−

min
X∈X

ρ∥H2X − S∥2F + (1− ρ)∥X −Xs∥2F
∣∣∣

≤ max
X∈X

∣∣∣[ρ∥H1X − S∥2F + (1− ρ)∥X −Xs∥2F
]
−[

ρ∥H2X − S∥2F + (1− ρ)∥X −Xs∥2F
]∣∣∣

= ρ · max
X∈X

∣∣∣∥H1X − S∥2F − ∥H2X − S∥2F
∣∣∣

≤ ρ · Lf · ∥H1 −H2∥.

Using the same manipulations, ḡ(H) can also be shown to
be ρLf -Lipschitz continuous. This completes the proof. □

APPENDIX Q
DETAILS ON EXPERIMENTS

In this appendix, we detail the logic flow upon which the
shared source codes are written.

Algorithm 1 Simulation Engine
Definition: Let I denote the number of Monte–Carlo episodes.
Remark: The notation 0 : 0.01 : 0.2 means a discrete vector
starting at 0, ending with 0.2, and uniformly spaced with 0.01.

Input: I = 1000
1: // Stage 1: Engine Initialization
2: N ← 16, K ← 4, L ← 30, f ← 5.9 × 109, PT ← 2.5,
θ ← 0 : 0.01 : 0.2

3: Generate Href
4: Design Perfect-Sensing Waveform Xs

5: // Stage 2: Offline Design Using Practically Available
Nominal Channel

6: Generate Constellation S
7: Generate Nominal Channel H̄ Using (54)
8: Design Nominally Optimal Waveform X̄ Using H̄
9: Calculate Nominally Estimated AASR RH̄,X̄

10: Design Robust Waveform X∗ Using H̄ for Every θ (NB:
X∗ depends on θ)

11: Calculate Robustly Estimated AASR RH∗,X∗

12: // Stage 3: Online Test Using Random And Practically
Unknown True Channel

13: i← 0
14: while true do
15: // Calculate True AASRs
16: Uniformly Generate H0 Using (54)
17: Calculate True AASR RH0,X̄ at Nominally Optimal

Waveform X̄
18: Calculate True AASR RH0,X∗ at Robust Waveform

X∗ for Every θ (NB: X∗ depends on θ)
19: // Next Episode
20: i← i+ 1
21: // End of Simulation
22: if i > I then
23: break while
24: end if
25: end while
Output: AASRs for all I episodes (used for box plots)

APPENDIX R
ADDITIONAL RESULTS ON DIFFERENT ϵ

The gap defined in Lemma 2, i.e., the value of ∥H∗X̄ −
S∥2F −∥H∗X∗−S∥2F (recall Methods 1 and 2), is shown in
Table V. The gap is statistically small even for large ϵ.

TABLE V
GAP IN LEMMA 2

ϵ 0.1 0.25 0.5
Gap 0.055± 0.031 0.234± 0.089 0.706± 0.188
Note: Format: mean ± std; when ϵ < 0.1, the gap is almost zero.

REFERENCES

[49] R. Enhbat, “An algorithm for maximizing a convex function
over a simple set,” Journal of Global Optimization, vol. 8, pp.
379–391, 1996.

[50] R. Everson, “Orthogonal, but not orthonormal, procrustes prob-
lems,” Advances in Computational Mathematics, vol. 3, no. 4,
1998.


	Appendix A: Extensions of Model 
	Appendix B: Proof of Lemma 1
	Appendix C: Proof of Lemma 2
	Appendix D: Proof of Theorem 1
	Appendix E: Proof of Proposition 
	Appendix F: Proof of Proposition 
	Appendix G: Proof of Proposition 
	Appendix H: Proof of Proposition 
	Appendix I: Intuitive Understanding of Solution Method 
	Appendix J: Proof of Lemma 
	Appendix K: Proof of Lemma 
	Appendix L: Proof of Proposition 
	Appendix M: Proof of Proposition 
	Appendix N: Proof of Proposition 
	Appendix O: Proof of Proposition 
	Appendix P: Proof of Proposition 
	Appendix Q: Details on Experiments
	Appendix R: Additional Results on Different 

