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ABSTRACT

This paper investigates the robust receive beamforming prob-

lem in wireless communication from the perspective of trust-

worthy machine learning. The inaccuracies of the signal

transmission model, i.e., outliers in the received signals and

channel uncertainties, are quantified by the distributional de-

viations from the nominal distribution induced by the nominal

signal model. The worst-case signal estimation performance

(i.e., worst-case mean-squared error) is minimized to achieve

robustness against the above two types of distributional in-

accuracies. The resultant receive beamformers incorporate

clipping operations to mitigate the adverse effects caused

by outliers. Experiments validate the effectiveness of the

proposed robust receive beamforming method in suppressing

outliers and combating channel uncertainties.

Index Terms— Distributional Robustness, Measurement

Outlier, Model Uncertainty, Receive Beamforming

1. INTRODUCTION

In multi-input multi-output (MIMO) wireless communica-

tions, outliers may exist in received signals, which can be

caused by, for example, array abnormality (e.g., manufac-

turing defects, physical damages) or impulse channel noises.

Impulse channel noises may occur due to switching transients

in power lines or automobile ignition in outdoor environ-

ments [1], to electromechanical switches of appliances in

indoor surroundings [2], to multipath fading [3], to multiuser

constructive interference, among many others. Ignoring the

existence of outliers and directly employing outlier-unaware

receive beamformers such as Wiener (i.e., minimum mean-

squared error beamformer; MMSE), Capon (i.e., minimum

variance distortionless response beamformer; MVDR), and

Zeroforing may cause significant performance degradation in

recovering the transmitted signals. For MIMO wireless com-

munications, outlier-aware receive beamformers are seldom

reported, although outlier-aware beamforming for wireless
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sensing has been intensively studied; see, e.g., [4–8]. In addi-

tion, conventional beamformers are also sensitive to various

channel uncertainties in signal transmission [9], for example,

the scarcity of pilot data. As an extension of [9] in response

to outliers, this paper studies a distributionally robust outlier-

aware (DROA) receive beamformer that can suppress the

adverse influences introduced by outliers in the received sig-

nals and simultaneously combat the channel uncertainties in

the signal transmission model. The method is derived from

the perspective of trustworthy machine learning that combats

the distributional uncertainty in the empirical distribution

constructed using pilot data. The min-max formulation is

leveraged where the minimization is to design the optimal

beamformer, while the maximization is to find the worst-case

distributional model uncertainty due to outliers and channel

inaccuracies.

Notations: Random quantities are written in upright fonts,

while deterministic ones are in italics. Matrices and vec-

tors are denoted by uppercase and lowercase symbols, respec-

tively. Let Cd denote the d-dimensional complex coordinate

space. We use CN (0,R,C) to denote the complex Gaus-

sian distribution with zero mean, covariance R, and pseudo-

covariance C; when C is not specified, it is treated as a zero

matrix. Let N (0,Σ) denote the real Gaussian distribution

with zero mean and covariance Σ. The trace and inverse of

square matrixX are denoted as TrX andX−1, respectively.

2. PROBLEM FORMULATION

We consider a base-band wireless signal transmission model

x =Hs+ v, (1)

where x ∈ CN , s ∈ CM , H ∈ CN×M , and v ∈ CN denote

the received signal, transmitted signal, channel matrix, chan-

nel noise, respectively. We suppose that v ∼ CN (0,Rv).
For technical convenience, this paper works on the real-space

equivalent of (1) by stacking the real and imaginary compo-

nents:

x =H · s+ v, (2)

where

x :=

[

Rex
Imx

]

, s :=

[

Re s
Im s

]

, v :=

[

Rev
Imv

]

,
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and

H :=

[

ReH − ImH
ImH ReH

]

;

x ∈ R2N , s ∈ R2M , v ∈ R2N , andH ∈ R2N×2M .

We examine the receive beamforming problem from the

perspective of statistical machine learning. To estimate the

transmitted signal s, we solve the following least mean square

problem

min
φ∈B

R2N→R2M

TrE(x,s)∼Px,s
[φ(x)− s][φ(x)− s]T, (3)

where an estimator φ is a function from x to s; BR2N→R2M

contains all Borel measurable functions from R2N to R2M ;

Px,s is the joint distribution of (x, s). In what follows, we

use B as a shorthand for BR2N→R2M . The optimal estimator

is known as the conditional mean of s given x; i.e.,

ŝ = φ(x) = E(x,s)∼Px,s
(s|x). (4)

When Px,s is a joint Gaussian, the optimal estimator is of a

linear form, i.e.,

ŝ =Wx = RT

xsR
−1
x x, (5)

where

W := RT

xsR
−1
x (6)

is called the Wiener receive beamformer, Rxs := ExsT, and

Rx := ExxT. However, when outliers exist in the received

signal x, the joint distribution Px,s is non-Gaussian. As a

result, the optimal estimator φ cannot be linear.

In the practice of wireless communication, the joint dis-

tribution Px,s is unknown and we must leverage pilot data

{(x1, s1), (x2, s2), . . . , (xL, sL)} to estimate Px,s where L
denotes the pilot length. Let

P̂x,s :=
1

L

L
∑

i=1

δ(x
i
,s

i
) (7)

denote the empirical distribution supported on the collected

pilot data, which acts as a data-driven estimate of the true but

unknown distribution Px,s, where δ(x
i
,s

i
) defines the point-

mass distribution concentrated at the point (xi, si). However,

the empirical distribution P̂x,s deviates from the true distribu-

tion Px,s due to the scarcity of the pilot data. To combat such

distributional uncertainty in P̂x,s, the distributionally robust

receive beamforming problem can be formulated as follows:

min
φ∈B

max
Qx,s∈Ux,s

TrE(x,s)∼Qx,s
[φ(x)− s][φ(x)− s]T, (8)

where the uncertainty set Ux,s contains a set of distributions

that are close to the empirical distribution P̂x,s; i.e.,

Ux,s(θ) := {Qx,s|∆(Qx,s, P̂x,s) ≤ θ}, (9)

∆ is an appropriate distance (e.g., Wasserstein distance) be-

tween Qx,s and P̂x,s, and θ ≥ 0 indicates the uncertainty

level. Although the true data-generating distribution Px,s is

unknown, we assume that Px,s is included in Ux,s(θ) so that

(8) can act as a surrogate for, or specifically an upper bound

of, (3) in real-world operation.

3. MAIN RESULTS

Outliers in observations x can be caused by several factors

such as array abnormality and impulses in channel noises v.

Since outliers in x are not necessarily from the channel noise

v, we shall study the non-Gaussianity of x directly.

Suppose that the signal s and the channel noise v are mu-

tually independent. Let u ∈ R2N be defined as

u := R−1/2
x · x, (10)

which is the normalized real-space observation; i.e., the co-

variance of u is I2N . Therefore, if the received signal x

is complex Gaussian, then u is a standard multi-variate real

Gaussian signal: u ∼ N (0, I2N ). Moreover, ui ∼ N (0, 1)
for every i ∈ [2N ] where ui is ith component of u, and ui and

uj are uncorrelated for i ̸= j; [2N ] := {1, 2, 3, ..., 2N}. In

the following discussions, for notational simplicity, we drop

the dependence of ui on i ∈ [2N ].

3.1. Uncertainty Sets

When there exist outliers in u (i.e., in u, x, and x), the true fat-

tailed distribution of u deviates from the nominal light-tailed

Gaussian distribution N (0, 1). Suppose that Fu(µ) is the cu-

mulative distribution function (CDF) induced by the distribu-

tion (i.e., probability measure) Pu of u. To model outliers in

u, two distributional uncertainty sets for Pu can be used.

1) The ϵ-contamination set [10, Example 4.2]:

Uu(ϵ) :=















Pu

∣

∣

∣

∣

∣

∣

∣

∣

Fu(µ) = Pu(u ≤ µ)
Fu(µ) = (1− ϵ)Φ(µ) + ϵH(µ)
H(µ) = 1−H(−µ)
H(µ) is a CDF on R















,

(11)

where Φ(µ) is the CDF corresponding to N (0, 1); H(µ)
is an arbitrary contamination distribution, which is sym-

metric about zero. In (11), Fu(µ) = (1− ϵ)Φ(µ)+ ϵH(µ)
means that with probability 1− ϵ, u is distributed accord-

ing to the standard Gaussian distribution Φ(µ), and with

probability ϵ, u is distributed according to a (fat-tailed)

contamination distribution H(µ).

2) The ϵ-normal set [10, Example 4.3]:

Uu(ϵ) :=







Pu

∣

∣

∣

∣

∣

∣

Fu(µ) = Pu(u ≤ µ)
supµ∈R |Fu(µ)− Φ(µ)| ≤ ϵ
Fu(µ) = 1− Fu(−µ)







. (12)



One can verify that every distribution Φ(µ) in (11) satis-

fies the constraint supµ∈R |Fu(µ)−Φ(µ)| ≤ ϵ. Hence, the set

in (11) is a subset of that in (12). The difference is that (11) is

a structured set, whereas (12) is a general non-structured one.

In practice, the true value ofRx is unknown and estimated

from the collected pilot data. Due to the scarcity of pilot data,

the estimated value R̂x is also not accurate. Hence, we can

construct the uncertainty set for R̂x as

URx
(θ1) := {Rx|∆m,1(Rx, R̂x) ≤ θ1}, (13)

where ∆m,1 is an appropriate matrix distance between Rx

and R̂x, and θ1 ≥ 0 quantifies the uncertainty level of R̂x.

Suppose that the true covariance matrix of the transmit-

ted signal s is Rs. Due to the dynamic time-varying power

control operation at the transmitter, the nominally available

R̂s at the receiver might be different fromRs. Therefore, we

construct the uncertainty set for R̂s as follows:

URs
(θ2) := {Rs|∆m,2(Rs, R̂s) ≤ θ2}, (14)

where ∆m,2 is an appropriate matrix distance between Rs

and R̂s, and θ2 ≥ 0 quantifies the uncertainty level of R̂s.

Similarly, the uncertainty set for R̂xs can be constructed

as

URxs
(θ3) := {Rxs|∆m,3(Rxs, R̂xs) ≤ θ3}, (15)

where ∆m,3 is an appropriate matrix distance between Rxs

and R̂xs, and θ3 ≥ 0 quantifies the uncertainty level of R̂xs.

Let

R :=

[

Rx Rxs

RT

xs Rs

]

. (16)

BecauseR is a covariance matrix, we haveR ⪰ 0.

3.2. Distributionally Robust Outlier-Aware Beamforming

Equipped with the uncertainty assumptions on u, R̂x, R̂s, and

R̂xs,1 the following proposition solves the distributionally ro-

bust outlier-aware receive beamforming problem (8), where

the type of the channel noise (i.e., v) distribution needs not to

be explicitly specified.

Proposition 1 Suppose that s ∼ N (0,Rs), and s and v are

uncorrelated. Let u be defined in (10). Then the distribution-

ally robust outlier-aware receive beamforming problem (8) is

particularized into

min
φ∈B

max
Pu ∈ Uu(ϵ)

Rx ∈ URx (θ1)

Rs ∈ URs (θ2)

Rxs ∈ URxs (θ3)

R ⪰ 0

TrE(u,s)∼Pu,s
[φ(R1/2

x u)−s][φ(R1/2
x u)−s]T.

(17)

1That is, the uncertainty sets Uu(ϵ), URx
(θ1), URs

(θ2), and URxs
(θ3),

respectively.

In addition, the distributionally robust outlier-aware estima-

tor of s is given as

ŝ = φ(x) = R∗T
xsR

∗−1/2
x ·ψ(R∗−1/2

x x) (18)

and the covariance of the estimation error is

E[ŝ− s][ŝ− s]T = R∗
s −R

∗T
xsR

∗−1
x R∗

xs · C
min, (19)

where

1) R∗
x,R∗

s , andR∗
xs solves

max
Rx,Rs,Rxs

Tr[Rs −R
T

xsR
−1
x Rxs · C

min]

s.t. ∆m,1(Rx, R̂x) ≤ θ1
∆m,2(Rs, R̂s) ≤ θ2
∆m,3(Rxs, R̂xs) ≤ θ3
Rx ≻ 0, R ⪰ 0.

(20)

2) If the ϵ-contamination set (11) is used, the nonlinear func-

tion ψ(µ) is entry-wise identical and for each entry

ψ(µ) :=







−K, µ ≤ −K
µ, |µ| ≤ K
K, µ ≥ K,

(21)

and the constants K and Cmin are implicitly determined

by ϵ; see Table 1.

3) If the ϵ-normal set (12) is used, the nonlinear function

ψ(µ) is entry-wise identical and for each entry

ψ(µ) = −ψ(−µ) :=







c tan( 12cµ), 0 ≤ µ ≤ a
µ, a ≤ µ ≤ b
b, µ ≥ b,

(22)

when ϵ ≤ 0.0303 (i.e., b ≥ a),

ψ(µ) = −ψ(−µ) :=

{

c tan( 12cµ), 0 ≤ µ ≤ a
b, µ ≥ a,

(23)

when ϵ > 0.0303 (i.e., b < a), and the constants a, b, c,
and Cmin are implicitly determined by ϵ; see Table 2.

Proof: The proof is technically straightforward given the

techniques in [11, Subsec. 2.3] and the treatments in [10, Ex-

amples 4.2, 4.3]. Therefore, the details of the proof are omit-

ted here; cf. [11, Thm. 8]. □

In Proposition 1, if we let θ1 = θ2 = θ3 = 0 and ϵ = 0
(i.e., Rx, Rs, and Rxs are exactly known and u is strictly

Gaussian), we have ψ(µ) = µ and (18) becomes the usual

linear Wiener beamformer (5). In contrast, if 0 < ϵ ≤ 0.5
(i.e., when large-value outliers exist), the values of the vec-

tor R
−1/2
x x are limited (i.e., clipped) to ±K and ±b; that

is, the influence of the large-value outliers in x is limited on

the estimator φ(x) of s. Therefore, Proposition 1 suggests

a nonlinear outlier-thresholded estimation method to recover

s, i.e., an observation censoring (i.e., clipping) method for x.

For visual illustrations of the function ψ(µ), see Fig. 1.



Table 1. Constants for ϵ-contamination case.
ϵ K 1/Cmin

0 ∞ 1.000

0.001 2.630 1.010

0.002 2.435 1.017

0.005 2.160 1.037

0.01 1.945 1.065

0.02 1.717 1.116

0.05 1.399 1.256

0.10 1.140 1.490

0.15 0.980 1.748

0.20 0.862 2.046

0.25 0.766 2.397

Table 2. Constants for ϵ-normal case.
ϵ a c b 1/Cmin

0 0 1.4142 ∞ 1.000

0.001 0.6533 1.3658 2.4364 1.019

0.002 0.7534 1.3507 2.2317 1.034

0.005 0.9118 1.3234 1.9483 1.075

0.01 1.0564 1.2953 1.7241 1.136

0.02 1.2288 1.2587 1.4921 1.256

0.03033 1.3496 1.2316 1.3496 1.383

0.05 1.3216 1.1788 1.1637 1.656

0.10 1.3528 1.0240 0.8496 2.613

0.15 1.4335 0.8738 0.6322 4.200

0.20 1.5363 0.7363 0.4674 6.981

0.25 1.6568 0.6108 0.3384 12.24
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(a) ψ(µ) in (21); ϵ = 0.05
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(b) ψ(µ) in (22); ϵ = 0.01
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(c) ψ(µ) in (23); ϵ = 0.05

Fig. 1. Visual illustrations of ψ(µ). The large values in

normalized observations µ are clipped to limit their influ-

ences on the estimators, and therefore, the outlier-robustness

is achieved; cf. (18). Within the non-clipping interval, ψ(µ)
in (a) is linear, in (b) is hybridly linear and nonlinear (tangent-

like), and in (c) is completely nonlinear (tangent-like).

3.3. Solution to (20)

To realize the distributionally robust outlier-aware receiver

beamformer (18), the remaining step is to solve maximization

problem (20), after particularizing ∆m,1, ∆m,2, and ∆m,3.

BecauseRx andRs are positive semidefinite, we can par-

ticularize ∆m,1(Rx, R̂x) and ∆m,2(Rs, R̂s) as one of the

follows, among many other construction methods.

1) Diagnal Loading [9]:

R̂x − θ1I2N ⪯ Rx ⪯ R̂x + θ1I2N ,

R̂s − θ2I2M ⪯ Rs ⪯ R̂s + θ2I2M ,
(24)

where θ1 ≥ 0 and θ2 ≥ 0 are such that R̂x − θ1I2N ⪰ 0

and R̂s − θ2I2M ⪰ 0, respectively.

2) Inflating [9]:

(1− θ1)R̂x ⪯ Rx ⪯ (1 + θ1)R̂x,

(1− θ2)R̂s ⪯ Rs ⪯ (1 + θ2)R̂s,
(25)

where θ1 ≥ 0 and θ2 ≥ 0 are such that (1 − θ1)R̂x ⪰ 0

and (1− θ2)R̂s ⪰ 0, respectively.

3) Norm Constraining:

∥Rx − R̂x∥ ≤ θ1,

∥Rs − R̂s∥ ≤ θ2,
(26)

where ∥ · ∥ denotes any appropriate matrix norm (e.g., F -

norm ∥ · ∥F ) and θ1, θ2 ≥ 0.

BecauseRxs is not square, we can only use norms to par-

ticularize ∆m,3(Rxs, R̂xs), i.e.,

∥Rxs − R̂xs∥ ≤ θ3. (27)

Equipped with the uncertainty assumptions on R̂x, R̂s,

and R̂xs, the proposition below solves (20).

Proposition 2 Problem (20) is solved by

1) In terms ofRx andRs:

a) Diagnal Loading:

R∗
x = R̂x + θ1I2N ,

R∗
s = R̂s + θ2I2M ,

(28)

if the uncertainty set in (24) is used.

b) Inflating:

R∗
x = (1 + θ1)R̂x,

R∗
s = (1 + θ2)R̂s,

(29)

if the uncertainty set in (25) is used.



2) In terms ofRxs:

R∗
xs = min

Rxs

Tr[RT

xsR
∗−1
x Rxs]

s.t. ∥Rxs − R̂xs∥ ≤ θ3.
(30)

Proof: The objective function in (20) is monotonically

increasing in bothRx andRs for every feasibleRxs because

0 ≤ Cmin ≤ 1; cf. Tables 1 and 2. Therefore, the upper

bounds ofRx andRs are optimal solutions. Note that all the

involved optimization procedures naturally guarantee R ⪰ 0

due to the positive semi-definiteness of the Schur complement

ofR. This completes the proof. □

We do not consider the norm constraints in (26) to obtain

R∗
x and R∗

s due to technical simplicity because there do not

exist closed-form solutions.

Problem (30) in Proposition 2 can be solved by the pro-

jected gradient descent method. Note that at the (t + 1)th

iteration, the gradient descent step is given by

R(t+1)
xs = R∗(t)

xs − α[(R
∗−1
x +R∗−T

x )R∗(t)
xs ], (31)

where α denotes the step size, and the projection step is given

by

R
∗(t+1)
xs = min

Rxs

∥Rxs −R
(t+1)
xs ∥F

s.t. ∥Rxs − R̂xs∥F ≤ θ3,
(32)

if F -norm is used. By vectorizing the maximization problem

in (32), we have

min
r

∥r − r̄∥2

s.t. ∥r − r̂∥2 ≤ θ3,
(33)

where r := vec(Rxs), r̄ := vec(R
(t+1)
xs ), and r̂ := vec(R̂xs).

Problem (33) can be analytically solved.

Proposition 3 If ∥r̄ − r̂∥2 ≤ θ3, Problem (33) is solved by

r∗ = r̄; (34)

If ∥r̄ − r̂∥2 > θ3, Problem (33) is solved by

r∗ = γr̄ + (1− γ)r̂, (35)

where

γ :=
θ3

∥r̄ − r̂∥2
.

Proof: This is obvious due to the geometry of the problem

in R4NM because r, r̄, r̂ ∈ R4NM . □

3.4. Summary of Algorithm

To sum up, the distributionally robust outlier-aware (DROA)

receive beamformer is summarized in Algorithm 1.

Algorithm 1 DROA Receive Beamformer

Input: ϵ, θ1, θ2, θ3, T , α

// ObtainR∗
x andR∗

s ; cf. (18) and (19)

ObtainR∗
x andR∗

s using (28) or (29)

// Projected Gradient Descent to solve (30) forR∗
xs

t← 0
R

∗(t)
xs ← R̂xs

while t ≤ T or until converges do

// Gradient Descent in (31)

R
(t+1)
xs = R

∗(t)
xs − α[(R∗−1

x +R∗−T

x )R
∗(t)
xs ]

// Projection

Solve (32) using Proposition 3

end while

// Determine ψ(·); cf. (18)

Obtain ψ(·) using (21), (22), or (23); see Tables 1 and 2

// Obtain DROA Receive Beamformer

Obtain ŝ using (18): ŝ = R∗T
xsR

∗−1/2
x ·ψ(R

∗−1/2
x x)

Obtain complex-space ŝ using ŝ; cf. (1) and (2)

Output: The estimate ŝ of the transmitted signal s

4. EXPERIMENTS

For experimental illustration, we consider a MIMO base-band

wireless transmission system where M = 4 and N = 8.2 Ev-

ery data block contains 500 data units for information trans-

mission. In the first scenario, there are no impulse chan-

nel noises, and the received signals are not contaminated by

outliers; in the second one, however, 10% received signals

are contaminated by random outliers due to impulse chan-

nel noises. The transmitted signals are quadrature phase-shift

keying (QPSK) symbols with unit power, and the symbol er-

ror rate (SER) is employed as the performance metric. We

assume that the ψ function in (21) is leveraged to suppress

outliers, and the diagonal loading scheme with θ = 0.05 in

(28) is used to combat the scarcity of pilot data and the un-

certainties in the signal model. (We use θ = 0.05 just for a

demonstration; one may use other values such as 0.1 or 0.01,

which however do not change the main claims in this paper.)

The performances of the outlier-unaware Wiener beam-

former (5) and the outlier-robust (i.e., outlier-aware) Wiener

beamformer (18) are shown in Fig. 2, against signal-to-noise

ratio (SNR) and pilot size L, averaged over 100 Monte–Carlo

episodes. The parameter K = 4 is empirically tuned since

the theoretically optimal value is practically unknown; NB:

the true value of ϵ in (11) is practically unknown. As we

can see, when outliers are present, 1) SERs significantly rise,

and 2) the outlier-aware beamformer in (18) outperforms the

outlier-unaware one in (5).

2Source codes are available online at GitHub: https://github.

com/Spratm-Asleaf/Beamforming-Outlier.

https://github.com/Spratm-Asleaf/Beamforming-Outlier
https://github.com/Spratm-Asleaf/Beamforming-Outlier
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Fig. 2. Performances of outlier-unaware and outlier-aware

(OA) Wiener beamformers against SNR and pilot size L.

(DL: Diagonal Loading.)

5. CONCLUSIONS

This paper proposes a distributionally robust outlier-aware

receive beamforming method for wireless communications,

which is developed from the perspective of uncertainty-aware

machine learning: To be specific, the method minimizes the

worst-case signal estimation performance to combat the dis-

tributional uncertainty in the empirical distribution supported

on the pilot data, where the uncertainty is due to the out-

liers in the received signals, the channel uncertainties, and the

scarcity of pilot data. The beamformer essentially employs a

nonlinear function to clip the large-valued signals to limit the

adverse effects introduced by outliers in the received signals,

and the popular diagonal-loading method is a particulariza-

tion of the proposed beamformer to fight against the channel

uncertainties and the scarcity of pilot data. The practical ef-

fectiveness of the proposed beamforming method is validated

using simulated experiments.

6. REFERENCES

[1] David Middleton, “Non-Gaussian noise models in sig-

nal processing for telecommunications: new methods

an results for class a and class b noise models,” IEEE

Trans. Inform. Theory, vol. 45, no. 4, pp. 1129–1149,

1999.

[2] T Keith Blankenship, DM Kriztman, and Theodore S

Rappaport, “Measurements and simulation of radio fre-

quency impulsive noise in hospitals and clinics,” in 1997

IEEE 47th Vehicular Technology Conference. Technol-

ogy in Motion. IEEE, 1997, vol. 3, pp. 1942–1946.

[3] Ali A Abdallah and Zaher M Kassas, “Multipath mitiga-

tion via synthetic aperture beamforming for indoor and

deep urban navigation,” IEEE Trans. Veh. Technol., vol.

70, no. 9, pp. 8838–8853, 2021.

[4] Victor AN Barroso and José MF Moura, “Maximum
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