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Distributionally Robust State Estimation for Jump
Linear Systems

Shixiong Wang

Abstract—In practice, the designed nominal model set for
a jump (Markov) linear system might be uncertain: 1) Every
candidate model might be inexact due to, e.g., mismatched
modeling assumptions or model’s identification errors; 2) The
nominal model set might be incomplete (e.g., the true system has
three operating modes but the designed model set includes only
two of them). Moreover, the designed model transition probability
matrix (TPM) might be uncertain: There is a discrepancy
between the designed and true TPMs. Neglecting such model
uncertainties and employing nominally optimal multi-model state
estimators may cause significant performance losses. Therefore,
this paper proposes a robust state estimation framework for
jump linear systems that is insensitive to these three types of
model uncertainty, technically by leveraging the distributionally
robust optimization theory. Specifically, the model uncertainties
are quantified by a collection of mixture distributions lying in a
distributional ball centered at the nominal mixture distribution,
where the nominal mixture distribution represents the nominal
state-measurement distribution defined by nominal candidate
models and their nominal model weights. Then, the robust state
estimation is taken over the least-favorable distribution in the
employed distributional ball. We show that the distributionally
robust state estimation problem for jump linear systems can
be reformulated into a tractable optimization equivalent such
as a quadratic program or a positive semi-definite program,
and in a special case, it can be analytically solved. Simulated
and real-world experiments suggest that the proposed method is
particularly useful when large model uncertainties exist.

Index Terms—Jump Linear Systems, Robust Filter, Distribu-
tional Robustness, Quadratic Program, Semi-Definite Program.

I. INTRODUCTION

A. Background

An actual physical plant or an information system may
work in several different modes, and the modes may jump
from one to another as time proceeds. For example, in multi-
model target tracking [1], at each time step, a target can
move according to any one of the following models [2]: the
constant velocity (CV) model, the constant turn (CT) model,
the constant acceleration (CA) model, the Singer model, etc.
To track the evolution of this system, we are concerned with
estimating its hidden state given measurements in the past.
This paper considers Markov jump linear system models.
The exactly optimal state estimation method for jump linear
systems is computationally intractable because the number of
the required state estimators grows exponentially as the time
proceeds, and therefore, it is not implementable in practice [3],
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[4]. Due to the intractability of the optimal state estimator, till
now, the most popular method to handle the state estimation
problem of jump linear systems is the interactive multiple
model (IMM) filter, which approximates the filtered (i.e.,
posterior) state distribution using a limited number of Gaussian
components [3], [5]. The IMM filter is pragmatically attractive
because its computational burden is as low as the generalized
pseudo-Bayesian estimator of first order (GPB1) but it has high
performance as the generalized pseudo-Bayesian estimator of
second order (GPB2) [3]. It is believed that the IMM filter
can provide an excellent compromise between the filtering
performance and the computational complexity [3], [6]–[10].

B. Problem Statement

In practice, the IMM filter (and also other multi-model
filters) faces the following limitations.
U1) The nominal model set might be uncertain; i.e., at some

times, none of the nominal models in the nominal model
set can exactly describe the true system dynamics. This
can be understood from two aspects.
a) For every nominal model in the model set, it is an
approximation to the true operating dynamics for the
mode, and therefore, model mismatch exists. In multi-
model target tracking, for instance, the nominal constant-
turn (CT) model may be different from the true CT
model because filter designers never exactly know the
true turning rate, and as a result, a misidentified value of
the turning rate may be used.
b) The nominal model set is not complete. For example,
the number of the actual operating modes is larger than
the size of the nominal model set. In multi-model target
tracking, the target may move according to a great
number of models [2], but filter designers may only use
some of them (e.g., only CV, CA, and CT).

U2) The model transition probability matrix might be un-
certain [7]–[9], [11], [12]. For example, in multi-model
target tracking, model transition probabilities from one
motion model to another may not be exactly known.

Hence, a state estimation framework for jump linear systems
that is able to handle the listed two types of uncertainties in
Items U1 and U2 is expected.

C. Literature Review And Research Aims

The treatment frameworks for uncertainties in a single
candidate model have been comprehensively surveyed and
discussed in [13], [14], including the uncertainties in system
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matrices and the uncertainties in noise distributions. When
model sets are complete and TPMs are exact, these methods
can be applied (or extended) for jump linear systems; cf., e.g.,
[15] and [16]. Therefore, this paper focuses on the review
of treatment methods for the ad-hoc modeling uncertainties
in jump linear systems, i.e., the incompleteness of nominal
model sets and the uncertainties in TPMs. Since the incom-
pleteness of nominal model sets has never been discussed in
the literature, we pay attention to the uncertainties in TPMs.
Several researches, e.g., [7]–[9], [11], [12], [17]–[19], have
discussed the state estimation problem for jump linear systems
when the model transition probability matrix is unknown or
uncertain. These works can be categorized into two streams.
The first stream aims at obtaining the accurate estimate of the
unknown TPM using the Frequentist method [8], [12], [17]
or the Bayesian method [7], [11], while the second stream
tries to design robust state estimators that are insensitive to
the uncertain TPM, e.g., the compensation-based method in
[9] and the H∞ method in [18]–[20]. However,
L1) The Frequentist method [8], [12], [17] and the Bayesian

method [7], [11] assume that the true TPM is a time-
invariant matrix. When the true TPM is (significantly)
time-varying, these methods cannot provide the exact
estimate of the true TPM anymore. In addition, even
when the true TPM is time-invariant, a sufficiently long
time horizon (i.e., sufficient measurements) is expected to
estimate the TPM to a satisfactory level. Also, choosing
satisfactory prior distributions for the unknown TPM
and determining the parameters of the prior distributions
are problem-dependent, and therefore, frustrating. Last
but not least, albeit the true TPM is time-invariant, the
estimate of the unknown TPM can hardly be exactly the
same as its true value so that there still exists uncertainty
(i.e., parameter identification error) in the estimated TPM;

L2) The performance of the compensation-based method in
[9] is problem-specific and it is desirable only when there
exists an overwhelmingly dominating model at each time
step (i.e., one of the model probabilities of candidate
models is outstandingly large). The H∞ method in [18]–
[20] requires that, for every candidate model, the noise
sequences have finite energies, which implies that the
power of the noises sequences vanish as time proceeds.
Also, it requires the jump systems to be mean square
stable. These two assumptions are obviously not always
the case for the state estimation problem for general jump
linear systems (e.g., in target tracking problems [2], [4],
systems are usually non-stable).1

When the existence of model uncertainties is noticed but we
have no specific information of where and how the uncertain-
ties exist (e.g., whether system matrices, noise distributions,
or TPMs are uncertain), the generic robust multi-model state
estimators in [21], [22] are applicable. However, these generic
methods tend to be overly conservative because they cannot

1However, the finite-energy assumption is reasonable for some state-
feedback automatic control problems because some external disturbances
are usually impulses or short-term perturbations. Besides, the mean-square-
stability assumption is also reasonable for some state-feedback automatic
control problems because systems can be stabilized by state feedback.

specifically respond to given types of uncertainty. To clarify
further, when we exactly know that the model uncertainties
exist only in TPMs, robust multi-model state estimators should
not admit possible uncertainties in other components (e.g.,
system matrices and noise distributions) and only respond to
uncertainties in TPMs.

Therefore, a unified multi-model state estimation framework
for jump linear systems that is insensitive to the listed two
types of uncertainty (i.e., Items U1 and U2) is expected. In
particular, the new framework is supposed to flexibly respond
to specified types of uncertainty.

D. Contributions

Following the conventional route [7]–[9], [11], [12], [17],
this paper particularly robustifies the IMM filter. Specifically,
a distributionally robust IMM filtering framework for jump
linear systems that is insensitive to the two types of uncertainty
listed in Subsection I-B is proposed; see (10), (11), and
(12). Subsequently, the explicit optimization equivalents of the
distributionally robust state estimation problem (11) subject to
(12) are derived in Propositions 1 and 2. We show that these
explicit optimization equivalents can be further reformulated
into tractable optimization equivalents such as quadratic pro-
grams [see, e.g., (26)] or positive semi-definite programs [see,
e.g., (34)], in different scenarios. Then, we show that these
tractable reformulations can be efficiently solved using either
the off-the-shelf solvers or the specifically-designed efficient
algorithms (see, e.g., Proposition 4). Particularly, in a special
case, the reformulated problem can be analytically solved;
see Theorem 2. Finally, the distributionally robust IMM filter
is summarized in Algorithm 1. Experiments suggest that the
proposed method is particularly useful when complex and
large model uncertainties exist in the nominal model; to be
specific, for example, the method is especially suitable for
tracking highly-maneuvering targets.

E. Notations

The space of all n-dimensional vectors is denoted by Rn.
Let Px denote the distribution of the random vector x ∈ Rn

(column by default). Let px(x) denote the probability density
(resp. mass) function of x if x is continuous (resp. discrete).
Whenever it is clear from contexts, we use p(x) as a shorthand
for px(x). The conditional distribution of x given y ∈ Rm is
denoted as Px|y. We use px|y(x|y) to denote the conditional
probability density (or mass) function of x given y = y,
shorted as p(x|y). Let Ex denote the expectation of x and
E(x|y) the conditional expectation of x given y. The d-
dimensional Gaussian distribution, parameterized by mean c
and covariance Σ, is denoted by Nd(c,Σ) and the correspond-
ing Gaussian density function is denoted by Nd(x; c,Σ).
Given an integer N , the running index set is defined as [N ] :=
{1, 2, . . . , N}. Let Yk denote the measurement sequence up
to and including the time k, i.e., Yk := (y1,y2, · · · ,yk).
A realization of Yk is denoted as Yk := (y1,y2, · · · ,yk).
Let I and 0 denote the identity and the zero matrices with
appropriate dimensions, respectively. We use M⊤ to denote
the transpose of the matrix M , and Tr [M ] its trace when
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M is square. Let Sd denote the set of all d-dimensional
symmetric matrices in Rd×d, and Sd+ (resp. Sd++) of all d-
dimensional symmetric positive semi-definite (resp. positive
definite) matrices in Sd. If A,B ∈ Sd, A ⪰ B (resp. A ≻ B)
indicates that A−B ∈ Sd+ (resp. A−B ∈ Sd++). If S ∈ Sd+,
let S1/2 be a square root of S (i.e., S1/2S1/2 = S).

II. PRELIMINARIES

A. Bayesian Estimation Subject to Multiple Models

Suppose the random vectors x and y have finite second
moments, and the joint distribution of them is Px,y. We are
concerned with estimating the unobservable vector x based on
the model Px,y and the observation y, in the minimum mean
square error sense. In other words, we aim to find an estimator
x̂ of x, which is a function ϕ of y [i.e., x̂ = ϕ(y)], such that

x̂ = argmin
ϕ∈Hy

TrE[x− ϕ(y)][x− ϕ(y)]⊤, (1)

where the expectation is taken over the joint distribution Px,y

and Hy contains all possible estimators of x based on y; for
more information, see [23]. As is well-known, x̂ = E(x|y).
Sometimes, we are not sure of the exact form of Px,y. But
we are confident that with probability ωj , Px,y is of the
form Pj,x,y where ωj’s are weights and

∑N
j=1 ωj = 1.

In other words, Px,y is a mixture of a set of distributions
{Pj,x,y}j=1,2,...,N with mixing probabilities {ωj}j=1,2,...,N ,
i.e., Px,y =

∑N
j=1 ωjPj,x,y. As a result, given a measurement

y, the optimal estimate of x is

x̂ =
∑N

j=1 µjx̂j , (2)

where x̂j := E(x|y, j) =
∫
xpj(x|y)dx,

µj := p(j|y) = ωjpj(y)

p(y)
=

ωjpj(y)∑N
j=1 ωjpj(y)

, (3)

pj(x|y) := p(x|y, j) denotes the posterior distribution of x
given y under the jth model, and pj(y) := p(y|j) denotes the
likelihood of the jth model under the measurement y. Hence,
by Bayes’s rule, µj ∝ ωjpj(y). In other words, ωj can be
understood as the prior model probability of the jth model
before observing y, while µj can be seen as the posterior
model probability of the jth model after observing y. The cor-
responding posterior error covariance E

[
(x− x̂)(x− x̂)⊤

∣∣y]
conditioned on y equals to∑N

j=1 µj

[
Pj + (x̂j − x̂)(x̂j − x̂)⊤

]
, (4)

where Pj := E
[
(x− x̂j)(x− x̂j)

⊤
∣∣ j,y] is the posterior

error covariance of the jth model given y.

B. Optimal Bayesian Estimation

The following fact is well established in applied statistics.
Fact 1 ( [23]): The posterior mean x̂ := E(x|y) solves both

min
ϕ∈Hy

TrE[x− ϕ(y)][x− ϕ(y)]⊤, (5)

and min
a∈Rn

TrE
{
[x− a][x− a]⊤

∣∣y}, ∀y = y, (6)

where x ∈ Rn and y ∈ Rm are two random vectors; y is a
possible realization of y. Note that given the realization y = y,
the real number a := ϕ(y) is an estimate of x. □

When y = y is specified, the optimal estimate of x derived
from (5) is x̂ = x̂(y = y) = E(x|y = y); i.e., the optimal
estimate x̂ is specified by the optimal estimator x̂ with y being
replaced with y. However, the optimal estimate derived from
(6) given y = y is directly x̂ = E(x|y); i.e., there is no op-
timal estimator directly associated with (6). We are interested
in (6) because it is not always convenient to solve (5). Hence,
when we obtain a measurement y, we may directly solve (6).
It is for this reason that in Subsection II-A, we work on a
specified y instead of the random vector y. One may verify
that, in Subsection II-A, deriving the closed-form expression
of E

[
(x− x̂)(x− x̂)⊤

]
, i.e., EyEx|y

[
(x− x̂)(x− x̂)⊤

∣∣y]
is extremely difficult. However, finding the closed-form ex-
pression of E

[
(x− x̂)(x− x̂)⊤

∣∣y] is relatively easy.

C. Distributional Balls

A distributional ball centered at the reference distribution P̄x

with radius θ ≥ 0 is defined as Fx(θ) := {Px|∆(Px, P̄x) ≤
θ}, where ∆(Px, P̄x) is a proper statistical similarity mea-
sure (e.g., Wasserstein distance, Kullback–Leibler divergence,
moment-based methods) between two distributions Px and
P̄x [13], [14]; θ is the size parameter of Fx(θ). Namely, a
distributional ball is a collection of probability distributions
that are close to P̄x. If ∆ is specified by a moment-based
method [13, Eq. (21)], then we need more than one parameter
to define the size of a distributional ball; in this case, the
distributional ball is denoted as Fx(θ) where a vector θ (called
size parameter vector) is involved. Without loss of generality,
this paper uses Fx(θ) to denote a generic distributional ball.

III. PROBLEM FORMULATION

We aim to estimate the unknown state xk of a jump linear
Markov system{

xk = Fj,k−1xk−1 +Gj,k−1wj,k−1, j = 1, 2, . . . , N,
yk = Hj,kxk + vj,k,

(7)
where k denotes the discrete time index; N is the size of the
nominal model set; xk ∈ Rn is the state vector; yk ∈ Rm

is the measurement vector; wj,k−1 ∈ Rp, vj,k ∈ Rm are
the process noise and measurement noise of the jth model,
respectively. Typically, for every nominal linear system in the
model set (i.e., for every j = 1, 2, . . . , N ), the following
properties are assumed to be satisfied [24]–[26]: 1) for all
k, xk, yk, wj,k, and vj,k have finite second moments; 2)
x0 ∼ Nn(x̄0,M0), and for all k, wj,k ∼ Np(µ

w
j,k,Qj,k) and

vj,k ∼ Nm(µv
j,k,Rj,k); 3) for any k1 ̸= k2, wj,k1

and x0 are
uncorrelated, so are vj,k1

and x0, wj,k1
and wj,k2

, and vj,k1

and vj,k2
; for any k1, k2, vj,k1

and wj,k2
are uncorrelated;

4) the involved parameters x̄0, M0, µw
j,k, µv

j,k, Qj,k, Rj,k,
Fj,k−1, Gj,k−1, and Hj,k are exactly known, and typically
µw

j,k and µv
j,k are the zero vectors. Note that for a true

operating jump system, at every time k, the true dominating
working mode j is unknown.
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The jump linear system (7) is called a hybrid linear system
because we can treat the operating but unknown mode jk at
the time k as a discrete system state so that the augmented
state vector {jk,xk} is a hybrid state vector consisting of both
a discrete state variable and a continuous state vector. Usually,
the evolution of the discrete state jk (i.e., the model transition
process) is modeled by a N -state homogeneous Markov chain
[3], and the model transition probability matrix (TPM) is
Π := {πij}i,j=1,2,...,N where πij denotes the probability that
the system’s operating mode jumps from the ith model at the
time k− 1 to the jth model at the time k. From the viewpoint
of Bayesian statistical signal processing, the state estimation
problem for jump linear systems can be stated as finding
the posterior (or filtered) state distribution of {jk,xk}, i.e.,
p(jk,xk|Yk), at the time k, based on the system model (7), the
TPM Π, and the past measurements Yk := (y1,y2, . . . ,yk).

The nominal system (7) defines two discrete-time stochastic
processes {xk} and {yk}, k = 1, 2, · · · . Suppose the nominal
joint state-measurement distribution defined by the nominal
system model (7) is P̄xk,Yk

. We would like to solve the
following optimization problem

min
ϕ∈HYk

TrE[xk − ϕ(Yk)][xk − ϕ(Yk)]⊤, (8)

where the expectation is taken over the joint distribution
P̄xk,Yk

; HYk
contains all possible estimators of xk based on

the measurement set Yk; ϕ is called an estimator and the one
solving (8) is the optimal estimator. One may easily verify by
contradiction that the optimal solution to (8) is unique. The
optimal estimator of xk in this minimum mean square error
sense is E(xk|Yk) ∈ HYk

. Since P̄xk,Yk
is not Gaussian due

to the multi-mode property of (7), E(xk|Yk) cannot be of a
linear form because a Gaussian mixture is no longer Gaussian;
cf. (2) and (3) where x̂ is no longer linear in y.

If the actual system dynamics deviates from the nominal
model (7), the true joint state-measurement distribution Pxk,Yk

will deviate from the nominal P̄xk,Yk
. As a result, a robust

state estimation solution that is insensitive to the model
deviations needs to be designed. The distributionally robust
counterpart of (8) can be written as

min
ϕ∈HYk

max
P∈Fxk,Yk

(θ)
TrE[xk − ϕ(Yk)][xk − ϕ(Yk)]⊤, (9)

where the expectation is taken over Pxk,Yk
and Fxk,Yk

(θ) is
the associated ambiguity set consisting of all possible joint
distributions Pxk,Yk

that lie in a distributional ball centered at
the nominal distribution P̄xk,Yk

with size parameter vector θ.
Since state estimation problems are real-time problems:

the measurements yk arrives sequentially and the optimal
estimator operates along the discrete time in a recursive way
[27], we instead solve a time-incremental [28] problem

min
ϕ∈Hyk

max
P∈Fxk,yk|Yk−1

(θ)
TrE

{
[xk−ϕ(yk)][xk−ϕ(yk)]

⊤|Yk−1

}
,

(10)
where the expectation is taken over Pxk,yk|Yk−1

and the am-
biguity set Fxk,yk|Yk−1

(θ) is constructed around P̄xk,yk|Yk−1
,

i.e., the nominal conditional joint state-measurement distri-
bution given the previous measurement sequence. Note that
in (10), the space of ϕ is only defined by yk instead of

Yk. To solve (10), we need to first design proper forms
for Fxk,yk|Yk−1

(θ), and then find the explicit optimization
equivalent(s) of (10) so that it can be efficiently solved.

Therefore, at each time step k, we are inspired to first
study a distributionally robust Bayesian estimation problem
with multiple nominal models

min
ϕ∈Hy

max
P∈Fx,y(θ)

TrE[x− ϕ(y)][x− ϕ(y)]⊤ (11)

subject to the multiple nominal joint state-measurement distri-
butions {P̄j,x,y}j∈[N ], the nominal prior model probabilities
{ω̄j}j∈[N ], and a properly constructed ambiguity set Fx,y(θ)
that is characterized by {P̄j,x,y}j∈[N ] and {ω̄j}j∈[N ]. The
subscript k (i.e., discrete time index) is dropped to avoid
notational clutter. Then, by identifying the joint distribution
of (xk,yk) conditioned on Yk−1, we can solve (10).

Remark 1: Model (11) is called the distributionally robust
counterpart of (1). Note that robust counterparts of the batch
and the recursive formulations are not equivalent: The former
(9) is called robust filtering without commitment while the
latter (10) is called robust filtering under commitment [28].
However, the robust counterpart for the recursive formulation
outperforms that for the batch formulation because the latter
tends to consume all the prescribed robustness budget at
the first several time steps (i.e., as the time proceeds, the
robust batch formulation would reduce to the usual non-robust
version); see [29, Appendix B]. □

IV. DISTRIBUTIONALLY ROBUST BAYESIAN ESTIMATION
SUBJECT TO MULTIPLE NOMINAL MODELS

In this section, we first design a proper ambiguity set
Fx,y(θ) that is compatible with the research aims raised
in Subsection I-C, and then solve the distributionally robust
Bayesian estimation problem (11). Because we desire the
flexibility that responds to specified types of uncertainty, in
order to take into account the individual model uncertainties
in every nominal candidate model and/or the uncertainties in
nominal model weights,2 a suitable ambiguity set Fx,y(θ) can
be constructed in (12), shown at the top of the next page, where
θ := [θ0, θ1, θ2, . . . , θN ]⊤, M(Rd) denotes all probability
distributions on Rd, and P(RN ) denotes all N -length discrete
distributions; P̄j,x,y represents the jth nominal joint state-
measurement distribution; ω̄ := (ω̄1, ω̄2, . . . , ω̄N )⊤ and ω̄j

denotes the nominal prior model probability of the jth model;
for all j ∈ [N ], ∆j(·, ·) represents the statistical similarity
measure between the possibly true joint state-measurement
distribution Pj,x,y and its nominal distribution P̄j,x,y, and
∆0(·, ·) the statistical similarity measure between the possibly
true prior model probability ω and its nominal value ω̄; θ0
and θj are the radii of the distributional sets defined by
∆0(·, ·) and ∆j(·, ·)’s, respectively. The ambiguity set in (12)
inherently allows the flexibility of responding to specified
types of uncertainty. For example, when we set θ0 to be
non-zero and all other θs (from θ1 to θN ) to be zeros, we
consider only the uncertainties in TPMs (and therefore in
model weights), and all candidate models are believed to be

2N.B.: Uncertainties in TPMs lead to uncertainties in model weights.
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Fx,y(θ) =

Px,y =
∑N

j=1 ωjPj,x,y

∣∣∣∣∣∣∣∣
Pj,x,y ∈M(Rn × Rm), ∀j ∈ [N ]
ω ∈ P(RN )
∆j(Pj,x,y, P̄j,x,y) ≤ θj , ∀j ∈ [N ]
∆0(ω, ω̄) ≤ θ0

 , (12)

exact. For another example, supposing N = 2, if we set
θ1 to be non-zero and θ0 and θ2 to be zeros, we consider
only the model uncertainties in the first nominal candidate
model, and the TPM and the second candidate model are
believed to be exact. Note that every element in Fx,y(θ) is a
mixture distribution, including the least-favorable distribution
that solves the inner maximization problem in (11). If N = 1,
we have ω1 = ω̄1 = 1 and Fx,y(θ) reduces to

Fx,y(θ) =
{
Px,y ∈M(Rn × Rm)

∣∣∆(Px,y, P̄x,y) ≤ θ
}
,

which is a special case discussed in [13].
Next, we find the tractable reformulation(s) of the distri-

butionally robust Bayesian estimation problem (11) subject to
the multi-model ambiguity set (12).

Consider the max-min problem induced by (11):

max
P∈Fx,y(θ)

min
ϕ∈Hy

TrE[x− ϕ(y)][x− ϕ(y)]⊤. (13)

Lemma 1: The min-max problem (11) and the max-min
problem (13) is equivalent. To be specific, the solution solving
(13) also solves (11), and vice versa. To clarify further, letting
V (ϕ,P) := TrE[x − ϕ(y)][x − ϕ(y)]⊤, and supposing ϕ∗

and P∗ solve the max-min problem (13), then (ϕ∗,P∗) forms
a saddle point of the objective function V (ϕ,P), i.e.,

min
ϕ∈Hy

V (ϕ,P∗) = V (ϕ∗,P∗) = max
P∈Fx,y(θ)

V (ϕ∗,P). (14)

Proof: The Gaussianity assumption in [14, Thm. 7] and
[30, Thm. 9] can be dropped without changing the statements
therein because, for any type of joint distribution Px,y (not
limited to a Gaussian), the unique optimal state estimator in
the minimum mean square error sense is the posterior mean
E(x|y). As a result, this lemma is immediate following the
proofs of [14, Thm. 7] and [30, Thm. 9]. □

The max-min problem (13) is easier to solve than the orig-
inal min-max problem (11) because for every P ∈ Fx,y(θ),
we can find the unique associated optimal estimator in Hy.
For every j ∈ [N ], supposing the nominal joint state-noise

distribution is P̄j,x,vj := Nn+m

([
x̄j

0

]
,

[
Mj 0
0 Rj

])
,

we have the nominal joint state-measurement distribution

P̄j,x,y :=

Nn+m

([
x̄j

Hjx̄j

]
,

[
Mj MjH

⊤
j

HjMj HjMjH
⊤
j +Rj

])
,

(15)
which is induced by the linear observation system y =
Hjx + vj . Accordingly, given the measurement y, we can
obtain the nominal state estimate x̂j and the nominal es-
timation error covariance Pj ; see Appendix A. For every
candidate distribution Px,y in Fx,y(θ), we assume that its
component distributions Pj,x,y,∀j ∈ [N ] are also Gaussian.
If the possible joint state-noise distribution is Pj,x,vj

:=

Nn+m

([
cj,x
cj,v

]
,

[
Σj,x 0
0 Σj,v

])
, we can obtain the joint

state-measurement distribution

Pj,x,y := Nn+m(cj ,Σj) (16)

where Σj :=

[
Σj,x Σj,xH

⊤
j

HjΣj,x HjΣj,xH
⊤
j +Σj,v

]
and cj :=[

cj,x
Hjcj,x + cj,v

]
. Accordingly, given the measurement y,

the state estimate x̂j and the estimation error covariance Pj

associated with Pj,x,y can be obtained; see Appendix A.
From (2) and (4), for a possible mixture distribution Px,y ∈
Fx,y(θ), if y = y is specified, we have the associated optimal
posterior estimate

x̂ =
∑N

j=1 µj · x̂j , (17)

and the corresponding estimation error covariance

P =
∑N

j=1 µj ·
{
Pj + (x̂j − x̂)(x̂j − x̂)⊤

}
, (18)

where x̂j , Pj , and µj are the optimal posterior estimate of
the state x, the posterior error covariance, and the posterior
model probability, corresponding to the jth nominal model,
respectively. As explained in Subsection II-B, to simplify the
problem-solving procedure and without loss of optimality, we
work directly on the case where y has been specified; i.e., (6).

Consequently, the explicit optimization equivalent of the
distributionally robust Bayesian estimation problem (11) sub-
ject to the ambiguity set (12) can be given below.

Proposition 1: Consider the distributionally robust Bayesian
estimation problem (11). Suppose that

1) The ambiguity set Fx,y(θ), which is a collection of
mixture distributions, is defined in (12);

2) Every candidate distribution inside Fx,y(θ) is a N -
component Gaussian mixture, and each Gaussian com-
ponent is defined as (16), for every j ∈ [N ];

3) The nominal distribution, which is the center of Fx,y(θ),
is a N -component Gaussian mixture, and each Gaussian
component is defined as (15), for every j ∈ [N ];

4) A measurement y = y is specified.
Then (11) can be explicitly reformulated into

max
Θ

Tr
∑N

j=1 µj ·
{
Pj + (x̂j − x̂)(x̂j − x̂)⊤

}
, (19)

where Θ := {ωj , cj,x,Σj,x, cj,v,Σj,v}j∈[N ]; the feasible
region of Θ is implicitly defined by Fx,y(θ) because every
Px,y in Fx,y(θ) is parameterized by Θ. Note that for every
j ∈ [N ], µj is defined by ωj through (3), and x̂j and Pj

are defined by cj,x,Σj,x, cj,v , and Σj,v (cf. Appendix A),
respectively; x̂ is defined in (17).

Proof: See Appendix B. □
Compared with the original distributionally robust Bayesian

estimation problem (11), which is extremely abstract, the refor-
mulated optimization equivalent (19) is explicit and specific.

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSP.2023.3322802

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Imperial College London. Downloaded on October 16,2023 at 11:20:39 UTC from IEEE Xplore.  Restrictions apply. 



6

Hence, when the ambiguity set Fx,y(θ) is designed, (19) can
be explicitly solved over Θ. However, (19) is still a difficult
problem because the objective is highly nonlinear in Θ.

For the convenience of later analysis, we give a compact
reformulation of (19).

Proposition 2: Problem (19) can be compactly rewritten as

max
Θ
−µ⊤Aµ+ b⊤µ, (20)

where

A :=


x̂⊤
1 x̂1 x̂⊤

1 x̂2 x̂⊤
1 x̂3 · · · x̂⊤

1 x̂N

x̂⊤
2 x̂1 x̂⊤

2 x̂2 x̂⊤
2 x̂3 · · · x̂⊤

2 x̂N

x̂⊤
3 x̂1 x̂⊤

3 x̂2 x̂⊤
3 x̂3 · · · x̂⊤

3 x̂N

...
...

...
. . .

...
x̂⊤
N x̂1 x̂⊤

N x̂2 x̂⊤
N x̂3 · · · x̂⊤

N x̂N

 , (21)

and

b :=


Tr [P1] + x̂⊤

1 x̂1

Tr [P2] + x̂⊤
2 x̂2

...
Tr [PN ] + x̂⊤

N x̂N

 . (22)

Since A ⪰ 0, the objective of (20) is concave in µ.
Proof: The objective of (19) can be rearranged

into −Tr [(
∑N

j=1 µj · x̂j)(
∑N

j=1 µj · x̂j)
⊤] +

∑N
j=1 µj ·

Tr [Pj + x̂jx̂
⊤
j ]. By defining A, b, we have (20). □

The reformulation from (19) to (20) is important for later
analysis because the objective of the former is cubic in µ
but that of the latter is quadratic in µ. Cubic programming
is difficult because convexity (or concavity) is not naturally
implied. However, generally speaking, (20) is still complicated
to be solved because µ, A, and b are all defined by the
decision variables Θ in a highly nonlinear manner.

In the following, we explicitly solve (19) or (20), whichever
is easier under investigated conditions.

A. When θ0 ̸= 0 But θj = 0,∀j ∈ [N ]

We first study a special case where θj = 0,∀j =
1, 2, . . . , N . Namely, we assume that the nominal model set
is correct and able to exactly describe every true dynamics
of the actual system. However, the prior model probabilities
ωj’s are uncertain due, e.g., to the uncertain model transition
probability matrix, to the uncertain initial model probability
at the time k = 0, or to the method uncertainty (of, e.g., the
IMM filter) in approximating posterior state distributions.

When θj = 0,∀j ∈ [N ], Fx,y(θ) in (12) reduces to

Fx,y(θ0) =

{
Px,y =

∑N
j=1 ωjP̄j,x,y

∣∣∣∣∣ ω ∈ P(RN )
∆0(ω, ω̄) ≤ θ0

}
.

(23)
It means that the nominal model weight vector ω is uncertain,
but the nominal model set is exact. Since only µ is related
to ω, and A and b are not related to ω, in this subsection,
we investigate (20) instead of (19). The distributionally robust
Bayesian estimation problem (20) can be rewritten as

max
ω

−µ⊤Aµ+ b⊤µ

s.t.


∑N

j=1 ωj = 1,

ωj ≥ 0, ∀j ∈ [N ],
∆0(ω, ω̄) ≤ θ0,

(24)

where Θ reduces to ω; the relation between the prior model
probability ωj and the posterior model probability µj , for
every model j, is established in (3); A and b are defined in
(21) and (22), respectively, with x̂j being replaced with x̂j

and Pj being replaced with Pj (cf. Appendix A). Note that
in this case, Pj,x,y = P̄j,x,y,∀j ∈ [N ].

Although the objective of (24) is quadratic in µ and both A
and b are fixed, (24) is not a quadratic program because the
decision vector is ω instead of µ, and the relation between ω
and µ is highly nonlinear; see (3). Since uncertain prior model
probabilities lead to uncertain posterior model probabilities,
to simplify the problem, we propose to solve (24) over the
posterior model probability µ rather than explicitly over the
prior model probability ω.3 We have

max
µ

−µ⊤Aµ+ b⊤µ

s.t.


∑N

j=1 µj = 1

µj ≥ 0, ∀j ∈ [N ],
∆0(µ, µ̄) ≤ θ0.

(25)

Compared to the model (24), the model (25) is not only easier
to be solved but also suitable to capture model uncertainties of
the nominal model set because uncertain models give inexact
model likelihood evaluations; cf. Step 1.6 in Algorithm 3
in the online supplementary materials. Since uncertainties in
the posterior model probabilities may be caused by many
factors (e.g., uncertain model transition probability matrix,
uncertainties in candidate models), even though the state
estimator for jump linear system (7) is robustified by taking
into consideration only µ, the robust estimator is still likely
to be insensitive to all the causing factors.

To measure the closeness between two discrete distributions
µ and µ̄ (i.e., to quantify uncertainties in µ), many statistical
similarity measures can be used, for example, the popular
Kullback–Leibler divergence and Wasserstein distance [30];
justifications and comparisons of using the two exemplified
measures can be seen in, e.g., [31]–[36].

We use the Kullback-Leibler (KL) divergence to define
∆0(·, ·); the case where the Wasserstein distance is employed
to define ∆0(·, ·) is discussed in Appendix C. The problem
(25) is particularized to

max
µ

−µ⊤Aµ+ b⊤µ

s.t.
{

1⊤µ = 1
µ⊤ lnµ− µ⊤ ln µ̄ ≤ θ0,

(26)

where lnµ := (lnµ1, lnµ2, . . . , lnµN )⊤. Since the objective
is concave and the constraints are convex, the solution of (26)
can be readily obtained using the Lagrangian duality theory
(particularly, the Karush-Kuhn-Tucker conditions) [37]. For
details, see Appendix I in the online supplementary materials.
Note that (26) may have multiple optimal solutions. Note also
that µ ≥ 0 is a redundant constraint because the function
lnµ implicitly requires it. We computationally prefer the KL
divergence for ∆0(·, ·) because the resulting solution method is
computationally more efficient than that under the Wasserstein
distance; for details, see Appendix C.

3For an extensive discussion, see Appendix H in the online supplementary
materials.
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B. When θ0 ̸= 0 And θj ̸= 0,∀j ∈ [N ]

In this subsection, we discuss the case that both the nominal
model set and the prior model probabilities are uncertain; i.e.,
the generic ambiguity set Fx,y(θ) in (12) is considered.

Proposition 3: Suppose both the model set and the prior
model probability ω are uncertain. If we conduct robustifica-
tion over the posterior model probability µ instead of the prior
model probability ω, the reformulated distributionally robust
Bayesian estimation problem (19) can be written as

max
Θ′

Tr
∑N

j=1 µj ·
{
Pj + (x̂j − x̂)(x̂j − x̂)⊤

}
s.t.

{
∆j(Pj,x,y, P̄j,x,y) ≤ θj , ∀j ∈ [N ]
∆0(µ, µ̄) ≤ θ0, 1⊤µ = 1, µ ≥ 0,

(27)

where x̂, x̂j , and Pj are defined in (17) and Appendix A,
respectively; Θ′ := {µj , cj,x,Σj,x, cj,v,Σj,v}j∈[N ]. Recall
that Pj,x,y is parameterized by cj,x,Σj,x, cj,v , and Σj,v ,
while P̄j,x,y is parameterized by x̄j ,Mj , and Rj ; see (16)
and (15), respectively.

Proof: This is resulted from the definition of the ambi-
guity set Fx,y(θ) in (12). □

Note that Θ′ in (27) is different from Θ :=
{ωj , cj,x,Σj,x, cj,v,Σj,v}j∈[N ] in (19). We optimize (27)
over Θ′ instead of Θ to reduce the complexity of the problem;
however, one can also optimize (27) over Θ for the fidelity
of the problem setting; see Appendix H in the online supple-
mentary materials.

Due to the complexity of the definitions of x̂ in (17) and
x̂j and Pj in Appendix A, Problem (27) is difficult to solve:
there exist strong nonlinearities and involve many decision
variables. Hence, we simplify (27) by making the following
assumption.

Assumption 1: Suppose cj,x = x̄j , cj,v = 0, and

Σj,xH
⊤
j (HjΣj,xH

⊤
j +Σj,v)

−1

= MjH
⊤
j (HjMjH

⊤
j +Rj)

−1,

for every j ∈ [N ]. □
Intuitively, when we conduct optimization in (27) by chang-

ing {µj , cj,x,Σj,x, cj,v,Σj,v}j∈[N ], Assumption 1 requires
that the value of x̂j remains unchanged and equal to its
nominal value defined by x̂j (cf. Appendix A) all the time.
However, the value of Pj , which is a function of variables
Σj,x and Σj,v , would change. This is one of the practical yet
promising tricks to shrink (i.e., limit the size of) the feasible
region of (27).

By Assumption 1, the problem (27) can be written as

max
Θ′

Tr
∑N

j=1 µj ·
{
Pj + (x̂j − x̂)(x̂j − x̂)⊤

}

s.t.


cj,x = x̄j , cj,v = 0, ∀j ∈ [N ]
Σj,xH

⊤
j = Kj · (HjΣj,xH

⊤
j +Σj,v),

∀j ∈ [N ]
∆j(Pj,x,y, P̄j,x,y) ≤ θj , ∀j ∈ [N ]
∆0(µ, µ̄) ≤ θ0, 1⊤µ = 1, µ ≥ 0,

(28)
where

Kj := MjH
⊤
j (HjMjH

⊤
j +Rj)

−1 (29)

is a known matrix. As assumed, for every j ∈ [N ], Pj,x,y

and P̄j,x,y are Gaussian. Hence, the distance between Pj,x,y

and P̄j,x,y is sufficient to be defined by the first two mo-
ments, i.e., their means and covariances. Recall that Pj,x,y is
parameterized by cj,x,Σj,x, cj,v , and Σj,v , while P̄j,x,y is
parameterized by x̄j ,Mj , and Rj . Therefore, it is sufficient
to only define uncertainty sets for matrices Σj,x and Σj,v

because cj,x and cj,v have been set to their nominal values.
To be specific, the problem (28) can be rewritten as

max
Θ′′

Tr
∑N

j=1 µj ·
{
Pj + (x̂j − x̂)(x̂j − x̂)⊤

}

s.t.



Σj,xH
⊤
j = Kj · (HjΣj,xH

⊤
j +Σj,v),
∀j ∈ [N ],

∆j,x(Σj,x,Mj) ≤ θj,x, ∀j ∈ [N ],
∆j,v(Σj,v,Rj) ≤ θj,v, ∀j ∈ [N ],
∆0(µ, µ̄) ≤ θ0, 1⊤µ = 1, µ ≥ 0,
Σj,x ⪰ 0,Σj,v ⪰ 0, ∀j ∈ [N ],

(30)

where Θ′′ := {µj ,Σj,x,Σj,v}j∈[N ], ∆j,x(Σj,x,Mj) means
a similarity measure between the two matrices Σj,x and Mj ,
and ∆j,v(Σj,v,Rj) denotes a similarity measure between the
two matrices Σj,v and Rj .

The problem (30) can be solved using the coordinate
descent method: we can first fix µ and optimize over
{Σj,x,Σj,v}j∈[N ], and then fix {Σj,x,Σj,v}j∈[N ] and opti-
mize over µ. The iterative process proceeds until it converges.
Since µj > 0,∀j ∈ [N ] and the constraints of µ are not cou-
pled with the constraints of {Σj,x,Σj,v}j∈[N ], this iterative
process can converge only in one round. To be specific, it is
sufficient to first fix µ and optimize over {Σj,x,Σj,v}j∈[N ],
and then fix {Σj,x,Σj,v}j∈[N ] and optimize over µ: no more
iterations are required.4

The sub-problem where {Σj,x}j∈[N ] and {Σj,v}j∈[N ] are
fixed and the optimization is conducted over µ has been solved
in Subsection IV-A. In the following, we focus on solving the
sub-problem when µ is fixed, which is

max
Υ

∑N
j=1 µj · TrPj

s.t.


Σj,xH

⊤
j = Kj · (HjΣj,xH

⊤
j +Σj,v),

∀j ∈ [N ],
∆j,x(Σj,x,Mj) ≤ θj,x, Σj,x ⪰ 0, ∀j ∈ [N ],
∆j,v(Σj,v,Rj) ≤ θj,v, Σj,v ⪰ 0, ∀j ∈ [N ],

(31)
where Υ := {Σj,x,Σj,v}j∈[N ]. Since µ > 0, for each j ∈
[N ], the problem (31) can be separately solved because both
the objective function and the feasible region are separable.
Specifically, for all i, j ∈ [N ] and i ̸= j, Pi and Pj are not
coupled, so are their respective constraints. As a result, the
solution Υ∗ = {Σ∗

j,x,Σ
∗
j,v}j∈[N ] of (31) also solves

max
Σj,x,Σj,v

TrPj

s.t.


Σj,xH

⊤
j = Kj · (HjΣj,xH

⊤
j +Σj,v),

∆j,x(Σj,x,Mj) ≤ θj,x, Σj,x ⪰ 0
∆j,v(Σj,v,Rj) ≤ θj,v, Σj,v ⪰ 0

(32)

4This can be intuitively seen from the equivalence between (31) and
(32): the specific value of µ does not influence the optimal values of
{Σj,x,Σj,v}j∈[N ]. Hence, the optimization (30) over {Σj,x,Σj,v}j∈[N ]
can be completely solved in the first-round iteration. Afterward, the optimiza-
tion over µ can be readily and completely solved as well.

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSP.2023.3322802

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Imperial College London. Downloaded on October 16,2023 at 11:20:39 UTC from IEEE Xplore.  Restrictions apply. 



8

for every j ∈ [N ], and vice versa. Therefore, it necessitates
and suffices to separately solve (32) for every j ∈ [N ].

Recall from Appendix A for the definition of the matrix
function:
Pj(Σj,x,Σj,v)

:= Σj,x −Σj,xH
⊤
j (HjΣj,xH

⊤
j +Σj,v)

−1HjΣj,x.

The theorem below plays an important role to further simplify
the problem (32).

Theorem 1: The matrix function TrPj(Σj,x,Σj,v) is mono-
tonically increasing in both Σj,x and Σj,v . Namely, for
every given Σj,v , if Σ1 ⪰ Σ2, we have TrPj(Σ1,Σj,v) ≥
TrPj(Σ2,Σj,v). Likewise, for every given Σj,x, if Σ1 ⪰ Σ2,
we have TrPj(Σj,x,Σ1) ≥ TrPj(Σj,x,Σ2).

Proof: See Appendix E. □
Theorem 1 equivalently transforms the problem (32) to

max
Σj,x,Σj,v

Tr[Σj,x +Σj,v]

s.t.


Σj,xH

⊤
j = Kj · (HjΣj,xH

⊤
j +Σj,v),

∆j,x(Σj,x,Mj) ≤ θj,x, Σj,x ⪰ 0,
∆j,v(Σj,v,Rj) ≤ θj,v, Σj,v ⪰ 0.

(33)
The proposition below summarizes the solution of the refor-

mulated distributionally robust Bayesian estimation problem
(27).

Proposition 4: Suppose both the model set and the prior
model probability ω are uncertain. If we conduct the robusti-
fication over the posterior model probability µ instead of the
prior model probability ω and Assumption 1 is adopted, then
the reformulated distributionally robust Bayesian estimation
problem (27) can be solved by

1) Step 1. Solving (33) for every j ∈ [N ];
2) Step 2. Solving (25) with updated {Σj,x,Σj,v}∀j∈[N ]

from Step 1.5 □
In the following, as a demonstration, we discuss the partic-

ular cases where ∆j,x(·, ·) and ∆j,v(·, ·) are defined by the
moments-based similarity measure. The case where ∆j,x(·, ·)
and ∆j,v(·, ·) are defined by the Wasserstein distance is
discussed in Appendix F.

If we use the moment-based ambiguity sets for Pj,x,y as in
[13], the problem (33) is particularized into

max
Σj,x,Σj,v

Tr[Σj,x +Σj,v]

s.t.


Σj,xH

⊤
j = Kj · (HjΣj,xH

⊤
j +Σj,v),

(1− θj,x)Mj ⪯ Σj,x ⪯ (1 + θj,x)Mj ,
(1− θj,v)Rj ⪯ Σj,v ⪯ (1 + θj,v)Rj ,
Σj,x ⪰ 0, Σj,v ⪰ 0,

(34)
where 0 ≤ θj,x ≤ 1, 0 ≤ θj,v ≤ 1. The problem (34) is a
standard linear positive semi-definite program (SDP), which
can be efficiently solved using mature SDP solvers such as
MOSEK, GUROBI, YALMIP. However, we show that in a
special case, (34) can be analytically solved.

Theorem 2: If θj,x = θj,v = θj , the optimal solution to (34)
is analytically given by{

Σ∗
j,x = (1 + θj)Mj ,

Σ∗
j,v = (1 + θj)Rj .

(35)

5When {Σj,x,Σj,v}∀j∈[N ] are updated, A and b in (25) would be
updated as well because x̂j ,Pj ,∀j ∈ [N ] therein would be updated.

Proof: See Appendix G. □

V. DISTRIBUTIONALLY ROBUST INTERACTIVE MULTIPLE
MODEL STATE ESTIMATOR

The overall distributionally robust interactive multiple
model (DRIMM) state estimator is summarized in Algorithm
1, which is a robustified, modified version of the standard IMM
filter in Algorithm 3 in the online supplementary materials. In
Algorithm 1, for clarity, we only highlight the modifications
and differences between the proposed distributionally robust
IMM filter and the standard IMM filter in Algorithm 3. For
other algorithmic statements, see Algorithm 3. Recall from
Appendix A that Pj is defined by Σj,x and Σj,v . In Step 2.1,
another modification method for Pj,k|k based on Wasserstein
distance is available in Appendix F; in Step 2.2, another
modification method for µk|k based on Wasserstein distance
is available in Appendix C. Note that Step 2.1 in Algorithm 1
solves (34) using (35) to modify Pj,k|k, ∀j ∈ [N ]; Line 6 is
due to Theorem 2 and the definition of Pj,k|k is in Appendix
A. Note also that the solution of (26) is given in Algorithm 2
in the online supplementary materials.

Algorithm 1 Distributionally Robust IMM State Estimator
Definition: θ0, θj , for every j ∈ [N ] are the size parameters
to define the scale of the ambiguity set (12). N is the number
of the nominal models. k denotes the discrete time index.
Pj,k|k is the posterior state estimation error covariance of the
jth nominal model at the time k. µk|k is the posterior model
probability at the time k.
External: Algorithm 3 (i.e., the standard IMM filter [3], [5])
in the online supplementary materials.

Input: θ0, θj , for every j ∈ [N ].
1: while true do
2: // (Step 1) At Time k
3: Execute Step 1 (i.e., Lines 2 ∼ 24) of Algorithm 3
4: // (Step 2) Robustification; See Proposition 4
5: // (Step 2.1) Modify Pj,k|k,∀j ∈ [N ] via (34)
6: Pj,k|k ← (1 + θj) · Pj,k|k, ∀j ∈ [N ]
7: // (Step 2.2) Modify µk|k via (25)
8: Solve (26) to modify µk|k
9: // (Step 3) Combined Posterior State Estimate

10: Execute Step 2 (i.e., Lines 25 ∼ 27) of Algorithm
3 to calculate robustified x̂k|k and Pk|k, using modified
Pj,k|k,∀j ∈ [N ] and µk|k

11: // Next Time Step
12: k ← k + 1
13: end while
Output: x̂k|k,Pk|k,µk|k,∀k

Remark 2 (Only TPMs Are Uncertain): Uncertain TPMs
lead to uncertain model weights. If there do not exist un-
certainties in candidate models and only model weights are
uncertain, we can robustify the IMM filter through only
modifying posterior model weights µk|k. In this case, Step 2.1
in Algorithm 1 should be ignored and only Step 2.2 should
be conducted. □
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Remark 3 (Candidate Models Are Uncertain): As long as
there exist uncertainties in the designed nominal model set, the
DRIMM filter in Algorithm 1 cannot be simplified: Neither
Step 2.1 nor Step 2.2 can be ignored. This is because un-
certain candidate models introduce uncertainties in evaluating
posterior model weights. Specifically, from (3), we can see
that when there exist uncertainties in candidate models, the
evaluation of model likelihoods cannot be exact, and therefore,
the posterior model weights cannot be exact either. However,
in practice, when candidate models are uncertain, one may
ignore Step 2.2 and just conduct Step 2.1. This leads to a
simplification (or approximation) of Algorithm 1, which is an
IMM filter using the robustified Kalman filter (rather than the
conventional non-robust one) for each candidate model. Recall
that the distributionally robust state estimation method for each
candidate model has been discussed in [13], [14]. □

Remark 4 (Computational Burdens): Compared with the
standard IMM filter in Algorithm 3 in the online supple-
mentary materials, the DRIMM filter in Algorithm 1 has an
additional robustification procedure in Step 2. In Step 2.1,
there is only a value assignment procedure, and hence, no extra
computational burdens are introduced. However, in Step 2.2,
an iterative process is involved to numerically solve (26); see
Algorithm 2 in the online supplementary materials. Therefore,
extra computational resources are required to conduct robus-
tification over µk|k. □

VI. EXPERIMENTS

We conduct multi-model target tracking experiments to
show the power of the proposed method. All the source
data and codes are available online at GitHub: https://github.
com/Spratm-Asleaf/DRSE-Jump. The results are obtained by
a Lenovo laptop with 16G RAM and 11th Gen Intel(R)
Core(TM) i5-11300H CPU @ 3.10GHz. The programming
environment is MATLAB 2019B. We implement the following
methods for performance comparison.

1) KF: the standard Kalman filter with the exactly known
model transition trajectory. In practice, the standard
Kalman filter is not applicable for jump linear systems
because we do not know the true model transition tra-
jectory. However, in a simulation experiment, we know
the underlying true model transition trajectory so that
the standard Kalman filter can be used to provide the
theoretically optimal filtering performance.

2) IMM-T: the IMM filter using the exactly true model
transition probability matrix. Note that in a simulation
experiment, we know the underlying true model transi-
tion probability matrix. But in practice, this method is
not applicable as the standard Kalman filter is.

3) IMM-N: the IMM filter using a user-specified nominal
model transition probability matrix.

4) IMM-R: the IMM filter using the distributionally robust
Kalman filter in [13] for every operating mode j ∈ [N ].
To clarify further, in Algorithm 3 in supplementary ma-
terials, Step 1.4 is modified according to the robustified
Kalman filter in [13] and all other steps in Algorithm 3
remain unchanged. See also Remark 3.

5) IMM-B: the IMM filter using the Bayesian method to
estimate the true TPM [7]. This method is applicable only
when TPM is uncertain.

6) IMM-M: the IMM filter using the maximum likelihood
method to estimate the true TPM [12]. This method is
applicable only when TPM is uncertain.

7) DRIMM: the distributionally robust IMM filter in Algo-
rithm 1, which shares the same nominal model transition
probability matrix with the IMM-N filter. This method
is applicable for any types of uncertainty. Particularly, it
can flexibly respond to specified types of uncertainty.

8) IMM-RS: the risk-sensitive IMM filter [21]. This method
is applicable for any types of uncertainty. However, it
cannot flexibly respond to specified types of uncertainty.

9) IMM-C: the compensation-based IMM filter [9]. This
method is applicable for any types of uncertainty. How-
ever, it cannot flexibly respond to specified types of
uncertainty.

Since the KF and the IMM-T filters are not applicable in
practice, given a nominal TPM, a method is promising if it
can outperform the IMM-N filter. Note that the IMM-T filter is
not optimal for jump linear systems due to its approximation
nature as elucidated in the introduction.

A. Simulated Experiments

We continue studying the classic one-dimensional target
tracking problem in [7], [9], [11], [17], [38] where the target
maneuvers with Markov switching accelerations. According
to [2], the motion of a target can be independently tracked in
each axis; therefore, focusing only on one axis does not lose
the generality. The jump Markov linear system is defined by

[
pk+1

sk+1

]
=

[
1 T
0 1

] [
pk
sk

]
+

[
T 2/2
T

]
[aj,k +wk]

yk = pk + vk
(36)

where pk ∈ R and sk ∈ R denote the position and velocity of a
moving target at time k, respectively; T denotes the sampling
time; aj,k ∈ R denotes the possible target maneuvering
acceleration at time k which takes the value of

aj,k =

 0, j = 1,
20, j = 2,
−20, j = 3;

(37)

wk ∈ R and vk ∈ R denote the acceleration noise and the
measurement noise at the time k, respectively. The following
settings, as conventionally made in the mentioned state-of-
the-art, are taken in this section: p0 ∼ N (80000, 1002), s0 ∼
N (400, 1002), wk ∼ N (0, 22), vk ∼ N (0, 1002), for every k,
and the model’s initial probability µ0 = [0.8, 0.1, 0.1]⊤. In this
paper, we set T = 1. Throughout the simulated experiments,
we use Π0 to denote the true model transition probability
matrix (TPM) and Π the nominal TPM. In addition, the
nominal value of maneuvering acceleration is denoted as āj,k,
which might be different from the true aj,k in (37).

For each simulation scenario, we conduct 100 independent
Monte-Carlo episodes and each episode runs 1000 time steps.
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The overall performance evaluation method for each filter is
the averaged root-mean-square error (RMSE):

1

100

100∑
l=1


√√√√ 1

1000

1000∑
k=1

(p
(l)
k − p̂

(l)
k )2 + (s

(l)
k − ŝ

(l)
k )2

 ,

where p
(l)
k (resp. s(l)k ) denotes the true value of position (resp.

velocity) at the time k in the lth Monte-Carlo simulation, and
p̂
(l)
k (resp. ŝ(l)k ) its estimate. Every method is well-tuned and

performs at its best for the given simulation scenario; details
can be accessed in the shared source codes and therefore
omitted here. For example, in the proposed DRIMM filter
(Algorithm 1), we have set θ0 = 0.1 and θj = 0.25 if the
jth candidate model is uncertain. The influence of the values
of θ’s to the filtering performances will be discussed later in
Subsection VI-A5.

1) When Only TPM Is Uncertain: First, we suppose that
the nominal Π is different from the true Π0. However, the
candidate models are exact (i.e., the nominal āj,k is the same
as the true aj,k in (37)). In this case, the IMM-R method is not
applicable since it is not designed to handle the uncertainty in
Π. Note that Step 2.1 in Algorithm 1 should be ignored; see
Remark 2.

We first set the true Π0 and the nominal Π as follows:

Π0 :=

 0.8 0.1 0.1
0.1 0.8 0.1
0.1 0.1 0.8

 ,Π :=

 0.9 0.05 0.05
0.05 0.9 0.05
0.05 0.05 0.9

 .

The results are shown in Table I.

TABLE I
WHEN ONLY TPM IS UNCERTAIN

Filter RMSE Avg Time Filter RMSE Avg Time
KF* 43.62 1.77e-06 IMM-T* 81.60 1.99e-05
IMM-N 82.44 1.94e-05 IMM-B 82.36 2.54e-05
IMM-M 82.32 5.32e-05 IMM-C 166.01 2.06e-05
IMM-RS 82.37 8.05e-05 DRIMM 82.19 2.14e-04

Avg Time: Average Execution Time at each time step (unit: seconds);
1e-5: 1× 10−5;
*: Not applicable methods in practice.

Next, we set Π0 and Π as follows:

Π0 :=

 0.1 0.1 0.8
0.1 0.8 0.1
0.1 0.1 0.8

 ,Π :=

 0.8 0.1 0.1
0.1 0.8 0.1
0.1 0.1 0.8

 .

That is, the first row and the third row of Π0 are the same.
However, the nominal Π mistakenly assumes that they are
different. The results are given in Table II.

TABLE II
WHEN ONLY TPM IS UNCERTAIN (ANOTHER EXAMPLE)

Filter RMSE Avg Time Filter RMSE Avg Time
KF* 43.62 1.91e-06 IMM-T* 82.48 2.00e-05
IMM-N 84.56 1.98e-05 IMM-B 84.03 2.54e-05
IMM-M 83.95 5.41e-05 IMM-C 111.60 2.07e-05
IMM-RS 84.63 8.09e-05 DRIMM 84.47 2.91e-04

See Table I for table notes.

From Tables I and II (and also many other similar experi-
ments), the following main points have to be highlighted.

1) The compensation-based method (i.e., IMM-C) is not
satisfactory for the two cases. This is because there does
not exist a dominating operating mode for both two cases:
i.e., the systems’ true operating modes are frequently
switching. (However, when the true switching frequency
is low, the IMM-C method would be useful; see the real-
world target tracking experiments in Appendix VI-B.)

2) In the first case (Table I), the IMM-B method, the
IMM-M method, the IMM-RS method, and the proposed
DRIMM method are all better than the nominal IMM-
N method. This suggests that the four methods are all
able to combat uncertainties in the nominal TPM Π. In
the second case (Table II), the IMM-M and the IMM-B
methods perform significantly better than the IMM-RS,
the proposed DRIMM, and the nominal IMM-N methods.
This is because the IMM-M and the IMM-B methods can
adaptively estimate the unknown true TPM so that the
uncertainties in the nominal TPM would be reduced. As
a result, the filtering performances of the IMM-M and
the IMM-B methods can be significantly improved. This
result is consistent with the findings in [13], [30]: i.e.,
adaptive methods which aim to reduce the uncertainties
would be potentially better than robust methods that aim
to just hedge against uncertainties.

3) Among the robust methods, the proposed DRIMM
method performs better than the generic IMM-RS method
because the former is able to specifically respond to the
uncertainties only in the nominal TPM. In contrast, the
IMM-RS method only assumes that there exist model
uncertainties; it does not take into account where and
how the uncertainties exist. Therefore, the IMM-RS filter
tends to be overly conservative.

In summary, when there exist uncertainties only in the
nominal TPM, we would suggest that the practitioners should
first consider adaptive methods such as the IMM-M and the
IMM-B methods because the two methods tend to estimate
the unknown true TPM and the uncertainties in the nominal
TPM are to be reduced. In addition, the two adaptive methods
are computationally more efficient compared to the proposed
DRIMM method.

2) When The Model Set Is Incomplete: Second, we consider
the case where the true system dynamics has five operating
modes: a1,k = 0, a2,k = 10, a3,k = −10, a4,k = 20,
and a5,k = −20. But the nominal model set still assumes
that there exist three operating modes, as in (37). This is a
common situation in target tracking. To be specific, when
we do not know the true maneuvering acceleration ak of
the moving target, there exist infinitely many possible values
for ak. However, considering practical constraints such as
computational complexity, we may only assume finitely many
values for ak. As a result, the designed nominal model set is
potentially incomplete. The true and nominal TPMs are set,
respectively, to
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Π0 :=


0.6 0.1 0.1 0.1 0.1
0.1 0.6 0.1 0.1 0.1
0.1 0.1 0.6 0.1 0.1
0.1 0.1 0.1 0.6 0.1
0.1 0.1 0.1 0.1 0.6

 , Π :=

 0.6 0.2 0.2
0.2 0.6 0.2
0.2 0.2 0.6

 .

The results are shown in Table III.

TABLE III
THE NOMINAL MODEL SET IS NOT COMPLETE

Filter RMSE Avg Time Filter RMSE Avg Time
KF* 43.62 1.77e-06 IMM-T* 92.24 3.79e-05
IMM-N 101.04 1.94e-05 IMM-B 100.73 2.54e-05
IMM-M 100.00 5.49e-05 IMM-C 100.42 2.09e-05
IMM-RS 98.53 8.02e-05 DRIMM 95.18 2.98e-04

See Table I for table notes.

As we can see from Table III, in this case, the adaptive
methods (i.e., the IMM-B and IMM-M methods) cannot work
significantly better than the nominal IMM-N method because
if the nominal model set is incomplete, nominal candidate
models are inexact models when the true operating modes
are not included in the nominal model set. Hence, there
exist uncertainties not only in the TPM but also in nominal
candidate models. As a result, robust methods (i.e., the IMM-
RS and DRIMM methods) that are able to combat all kinds
of uncertainties are promising. Among robust methods, the
proposed DRIMM method outperforms the IMM-RS method.

3) When Candidate Models Are Uncertain: Third, we
suppose that the candidate models are uncertain (i.e., the
nominal āj,k = [0, 10,−10] is different from the true aj,k =
[0, 20,−20] in (37)).

When Π = Π0. Let the diagonal elements of the TPM be
0.8s, and all other non-diagonal elements be 0.1s. In this case,
the IMM-B method and the IMM-M are not applicable since
they are not designed to handle the uncertainties in candidate
models. The results are shown in Table IV.

TABLE IV
CANDIDATE MODELS ARE UNCERTAIN BUT TPM IS EXACT

Filter RMSE Avg Time Filter RMSE Avg Time
KF* 43.62 1.80e-06 IMM-T* 81.60 2.02e-05
IMM-N 95.83 2.08e-05 IMM-C 161.48 2.15e-05
IMM-RS 90.43 8.44e-05 DRIMM 87.67 2.85e-04
IMM-R 88.14 2.54e-05

See Table I for table notes.

As we can see from Table IV, when there exist uncertainties
only in the candidate models, the IMM-R filter, the IMM-
RS filter, and the DRIMM filter can outperform the nominal
IMM-N filter. In addition, the proposed DRIMM filter works
better than the IMM-R filter, which validates the claims
in Remark 3: That is, uncertain candidate models lead to
uncertain model weights, and therefore, robustification should
also be conducted over model weights.

When Π ̸= Π0. Let the diagonal elements of the true TPM
(i.e., Π0) be 0.8s, and all other non-diagonal elements be 0.1s.
Let the diagonal elements of the nominal TPM (i.e., Π) be
0.6s, and all other non-diagonal elements be 0.2s. The results
are shown in Table V.

TABLE V
BOTH CANDIDATE MODELS AND TPM ARE UNCERTAIN

Filter RMSE Avg Time Filter RMSE Avg Time
KF* 43.62 1.84e-06 IMM-T* 81.60 1.98e-05
IMM-N 104.48 1.92e-05 IMM-B 103.99 2.61e-05
IMM-M 102.93 5.35e-05 IMM-C 103.15 2.07e-05
IMM-RS 98.44 7.98e-05 DRIMM 90.23 2.99e-04
IMM-R 93.25 2.50e-05

See Table I for table notes.

As we can see from Table V, when there exist uncertainties
in both the candidate models and the nominal TPM, all
methods (except the KF and IMM-T methods) can outperform
the nominal IMM-N filter because the uncertainties can be
adaptively reduced or robustly withstand to some degree. Also,
the proposed DRIMM method works better than the IMM-
RS method as the latter tends to be overly conservative.
In addition, the DRIMM method is better than the IMM-R
method because the latter can only partially respond to the
uncertainties in the candidate models. In contrast, the DRIMM
method is able to work for uncertainties in both the candidate
models and the nominal TPM.

4) When There Are No Model Uncertainties: Fourth, we
suppose that there are no any model uncertainties (i.e., both the
TPM and all candidate models are exact). We let the diagonal
elements of the TPM (N.B.: Π0 = Π) be 0.8s, and all other
non-diagonal elements be 0.1s. In addition, we let the nominal
āk be equal to the true ak in (37). The filtering results are
shown in Table VI.

TABLE VI
THERE EXIST NO ANY MODEL UNCERTAINTIES

Filter RMSE Avg Time Filter RMSE Avg Time
KF* 43.62 1.78e-06 IMM-T* 81.60 2.01e-05
IMM-N 81.60 1.98e-05 IMM-B 81.61 2.59e-05
IMM-M 81.61 5.37e-05 IMM-C 110.69 2.18e-05
IMM-RS 82.39 8.05e-05 DRIMM 82.45 1.67e-04
IMM-R 82.44 2.51e-05

See Table I for table notes.

As we can see from Table VI, when there exist no model
uncertainties, all modified IMM methods would perform worse
than the nominal IMM-N method. This result is consistent
with the findings in [13], [30], [39]: There exists a trade-
off between the robustness in uncertain conditions and the
optimality in perfect conditions. To be specific, robust methods
are not optimal in exact conditions but they can withstand
uncertainties in inexact conditions; in contrast, the nominal
IMM-N method is the best in exact conditions but it has no
ability to combat uncertainties in inexact conditions.

5) On The Size of Uncertainty Set (12): In this subsec-
tion, we investigate the influence of the values of the size
parameters θ’s in the uncertainty set (12). As an example
and without loss of generality, we suppose that the TPM is
exact and only the candidate models are uncertain. To be
specific, the nominal āj,k = [0, 10,−10] is different from the
true aj,k = [0, 20,−20]. The diagonal elements of the TPM
(N.B.: Π0 = Π) are set to 0.8s and the non-diagonal ones
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are set to 0.1s. The performances of the DRIMM filter are
given in Table VII, against the value of θ := θj for every
j such that the jth model is uncertain (i.e., j = 2, 3 in this
case). As we can see from Table VII, the size of the ambiguity
set (12) can be neither too large nor too small. If the size is
too large, the DRIMM filter would be extremely conservative,
while if the size is too small, the DRIMM filter cannot offer
sufficient robustness. This result is consistent with those in
[13], [30], [39]. However, the convincing tuning method for θ’s
is lacking because the true system state (i.e., training data set)
is unknown for a real state estimation problem, and therefore,
θ’s cannot be rigorously tuned to be optimal. As such, we
leave this as an open problem to be solved by the future
research. At present, we can only suggest that practitioners
can try appropriate values of θ’s for their specific problems.

TABLE VII
PERFORMANCES (I.E., RMSE) OF DRIMM AGAINST VALUES OF θ

θ 0.0 0.1 0.2 0.3 0.4
RMSE 95.44 90.49 87.67 86.10 85.30

θ 0.5 0.6 0.7 0.8 0.9
RMSE 85.41 85.36 85.51 85.82 86.24

B. Real-World Target Tracking Examples

We track the real-time positions and velocities of a slowly-
maneuvering car and a highly-maneuvering quadrotor drone,
respectively. The raw position measurements are received by
traditional GPS (global positioning system) solutions, while
the high-accuracy real-time position and velocity measure-
ments (treated as ground truths) are obtained by RTK (real-
time kinematic) solutions [40]. We continue adopting the target
tracking framework in (36) where the target’s true acceleration
at every time k is unknown, and hence, some nominal values
are used. The nominal model set is therefore incomplete and
uncertain.

1) Track A Slowly-Maneuvering Car: In this experiment,
the data are collected by a slowly-maneuvering car that carries
a GPS solution and an RTK solution; the car travels on a road
in Beijing, China. The commercial model of the used RTK
chip is P327 and of the antenna is UA35, both produced by
UniStrong Co., Ltd., Beijing, China; see http://en.unistrong.
com/. The car, its real-time velocities, and its trajectory are
shown in Fig. 1.

Without loss of generality, we study the tracking problem in
the east axis (in the east-north-up coordinate). We suppose that
there are three nominal values for acceleration in the east axis:
āj,k = [0, 2.5,−2.5]. The diagonal elements of the nominal
TPM are set to 0.8s and the non-diagonal ones are set to 0.1s.
The tracking results are shown in Table VIII.

As we can see, in this case, the robust filters (i.e., the IMM-
RS, IMM-R, and DRIMM) are not preferable. In contrast, the
adaptive filters (i.e., the IMM-B and IMM-M) outperform the
nominal IMM-N filter because the uncertainty in the TPM is
reduced. In particular, the IMM-C filter significantly works
best. This is because the car is a slowly-maneuvering object
and seldom maneuvers: the nearly-constant velocity (CV)

(a) car
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Fig. 1. Car, its real-time velocities, and its trajectory (data credit: UniStrong).

TABLE VIII
TRACKING RESULTS OF THE CAR (SEE TABLE I FOR NOTES)

Filter RMSE Avg Time Filter RMSE Avg Time
IMM-N 2.30 2.21e-05 IMM-B 2.26 2.86e-05
IMM-M 2.02 5.75e-05 IMM-C 1.72 2.28e-05
IMM-RS 2.30 8.22e-05 DRIMM 2.30 5.07e-05
IMM-R 2.29 2.34e-05

model where āk = 0 is the dominating model (N.B.: the
trajectory consists of piece-wise straight-line segments). To
clarify further, small uncertainties exist in the nominal model
set and the CV model matches well most of the time.

2) Track A Highly-Maneuvering Drone: In this experiment,
the data are collected by a highly-maneuvering quadrotor
drone that carries a GPS solution and an RTK solution. The
commercial model of the drone is Matrice-300-RTK produced
by DJI Co., Ltd., Shenzhen, China; see https://www.dji.com/.
The drone flies following round trajectories in the air over an
open playground, and the flying speed is about 6m/s when
collecting data. Parts of the drone’s real-time velocities and
its trajectory are shown in Fig. 2.

Without loss of generality, we study the tracking problem in
the east axis (in the east-north-up coordinate). We suppose that
there are three nominal values for acceleration in the east axis:
āj,k = [0, 2.5,−2.5]. The diagonal elements of the nominal
TPM are set to 0.8s and the non-diagonal ones are set to 0.1s.
The tracking results are shown in Table IX.

TABLE IX
TRACKING RESULTS OF THE DRONE (SEE TABLE I FOR NOTES)

Filter RMSE Avg Time Filter RMSE Avg Time
IMM-N 0.99 4.85e-05 IMM-B 1.06 6.25e-05
IMM-M 1.00 1.00e-04 IMM-C 1.90 5.02e-05
IMM-RS 0.99 1.65e-04 DRIMM 0.86 1.20e-03
IMM-R 0.89 8.84e-05

As we can see, in this case, the proposed DRIMM filter
outperforms other filters. This is because the drone continu-
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Fig. 2. Drone, its real-time velocities, and traveling trajectory, starting from
10s and ending at 60s (data credit: Competitive Robot Base, Northwestern
Polytechnical University, Xi’An, China).

ously maneuvers all the time (i.e., the operating models are
frequently switching), and therefore, large uncertainties exist
in both the nominal model set and the TPM. Further, we
improve the flying speed of the drone from 6m/s to 12m/s.
(The maximum flying speed of the used drone is 23m/s; see
https://www.dji.com/.) The corresponding tracking results are
shown in Table X. The results suggest that, since the modeling
uncertainties in both the nominal model set and the TPM are
larger, the advantage of the proposed DRIMM filter becomes
much more significant. In this case, the IMM-C filter (which
performs best in the car-tracking case) even diverges because
it is overly confident about the model that has the highest
estimated model probability.

TABLE X
TRACKING RESULTS OF THE DRONE (12M/S; SEE TABLE I FOR NOTES)

Filter RMSE Avg Time Filter RMSE Avg Time
IMM-N 2.78 4.81e-05 IMM-B 2.68 6.12e-05
IMM-M 2.80 1.26e-04 IMM-C Diverged
IMM-RS 2.78 1.72e-04 DRIMM 2.25 9.22e-04
IMM-R 2.72 7.30e-05

3) Closing Remarks: For detailed parameter settings, see
shared source codes. The influences of the parameters used in
filters are consistent with conclusions in simulated experiments
in Section VI (e.g., sizes of ambiguity sets in Subsection
VI-A5), and therefore, related discussions are omitted. One
may use shared source codes to verify this claim.

VII. CONCLUSIONS

This paper studies the robust state estimation problem for
jump Markov linear systems subject to several modeling
uncertainties such as 1) the uncertainty of the model transition
probability matrix, 2) the uncertainties of nominal candidate
models in the nominal model set, and/or 3) the incompleteness
of the nominal model set. A unified distributionally robust

interactive multiple model (DRIMM) filter is proposed to with-
stand these model uncertainties. The following main points
have to be highlighted.

1) When there exist uncertainties only in TPMs, the IMM
filter with Bayesian estimation (i.e., the IMM-B method)
and the IMM filter with maximum likelihood estimation
(i.e., the IMM-M method) that aim to estimate the un-
known true TPMs are recommended. All robust methods
should be the last choices. However, the recommendation
is conditioned on a sufficiently long time horizon (i.e.,
sufficient measurements are available so that the TPM
can be estimated to a satisfactory accuracy level).6

2) When there exists a dominating operating model over
time (i.e., the systems’ operating modes do not frequently
switch), the IMM filter with compensation (i.e., the IMM-
C method) is recommended, for example, in slowly-
maneuvering target tracking.

3) When there exist uncertainties in nominal candidate mod-
els or when the nominal model set is not complete,
the proposed DRIMM method is recommended. This is
because the DRIMM method is able to flexibly respond
to all specified types of uncertainty. Also, it tends to be
less conservative than the risk-sensitive IMM filter (i.e.,
the IMM-RS method).

Unfortunately, the performance of the DRIMM filter de-
pends heavily on the size parameter(s) of the associated
ambiguity set, and the convincing tuning method for the size
parameter(s) is yet to be found. Therefore, future research
following this work is expected to address this open issue.

APPENDIX A
OPTIMAL ESTIMATES AND ERROR COVARIANCES

We have

x̂j = x̄j +MjH
⊤
j (HjMjH

⊤
j +Rj)

−1(y −Hjx̄j), (38)

Pj = Mj −MjH
⊤
j (HjMjH

⊤
j +Rj)

−1HjMj , (39)

x̂j = cj,x+Σj,xH
⊤
j (HjΣj,xH

⊤
j +Σj,v)

−1(y−Hjcj,x−cj,v),
(40)

and

Pj = Σj,x−Σj,xH
⊤
j (HjΣj,xH

⊤
j +Σj,v)

−1HjΣj,x, (41)

respectively. For detailed derivations of (38), (39), (40), and
(41), refer to the standard Kalman filtering theory.

APPENDIX B
PROOF OF PROPOSITION 1

According to the strong min-max property in (14), (11)
is equivalent to (13). Since for every P ∈ Fx,y(θ), the
associated optimal estimator x̂ ∈ Hy is uniquely determined
by x̂ = E(x|y), (13) reduces to finding the worst-case
conditional distribution P∗

x|y=y ∈ Fx,y=y(θ) that solves

max
P∈Fx,y=y(θ)

TrE
{
[x− ϕ(y)][x− ϕ(y)]⊤

∣∣∣y = y
}
, (42)

6One may use shared source codes to verify this claim.
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where the ambiguity set Fx,y=y(θ) contains all condi-
tional distributions of x given y = y. Since every candi-
date distribution Px|y=y in Fx,y=y(θ) is parameterized by
{ωj , cj,x,Σj,x, cj,v,Σj,v}j∈[N ], by recalling (3), (40), (41),
(17), and (18), problem (42) can be transformed into (19). □

APPENDIX C
USE WASSERSTEIN DISTANCE BETWEEN µ AND µ̄

Below we discuss the case where the statistical similarity
measure between µ and µ̄ is defined by the Wasserstein
metric. The distributionally robust Bayesian problem (25) is
particularized to

max
µ

−µ⊤Aµ+ b⊤µ

s.t.


minQ

∑N
i=1

∑N
j=1 CijQij ≤ θ0,∑N

j=1 Qij = µ̄i, ∀i ∈ [N ],∑N
i=1 Qij = µj , ∀j ∈ [N ],

Qij ≥ 0, ∀i, j ∈ [N ],

(43)

where Cij measures the difference between the two dis-
tributions P̄i,x,y and P̄j,x,y (which can be defined by the
Wasserstein distance, the KL divergence, or whatever suit-
able), and the matrix Q := {Qij}∀i,j∈[N ] can be regarded
as a discrete joint distribution whose marginals are µ and
µ̄. Note that

∑N
j=1 µj = 1 =

∑N
j=1

∑N
i=1 Qij is im-

plicitly admitted because
∑N

i=1

∑N
j=1 Qij =

∑N
i=1 µ̄i =

1. Note also that the minimization operator in the first
constraint can be dropped because it is redundant for
this problem. For two Gaussian distributions Nd(ci,Σi)
and Nd(cj ,Σj), the Wasserstein distance between them

is CW
ij =

√
∥ci − cj∥2 +Tr

[
Σi +Σj − 2

(
Σ

1
2
i ΣjΣ

1
2
i

) 1
2

]
and the KL divergence between them is CKL

ij =
1

2

[
∥ci − cj∥2Σ−1

j

+Tr
[
Σ−1

j Σi − I
]
+ ln det

(
Σ−1

i Σj

)]
.

By plugging
∑N

i=1 Qij = µj ,∀j ∈ [N ] into the objective
function, the problem (43) can be explicitly written as

max
Q

−
N∑
i=1

N∑
j=1

N∑
m=1

N∑
n=1

QmiAijQnj +

N∑
i=1

N∑
j=1

bjQij

s.t.


∑N

i=1

∑N
j=1 CijQij ≤ θ0,∑N

j=1 Qij = µ̄i, ∀i ∈ [N ],

Qij ≥ 0, ∀i, j ∈ [N ].
(44)

The problem (44) is quadratic in the matrix-valued variable Q.
Therefore, solving (44) is difficult because existing general-
purpose commercial solvers cannot be used. As a result, a
specifically efficient solution method for (44) or (43) is ex-
pected. We propose to use the Frank–Wolfe method [41]. The
Frank–Wolfe method is an iterative method. At each iteration,
it linearizes the nonlinear objective of an optimization problem
and uses the objective-linearized sub-problem to find a feasible
direction along which the current solution can be improved.
Specifically, the Frank–Wolfe method can construct a sequence
{µ(r)}r=0,1,2,... such that it converges to the optimal solution
of (43) as r →∞ where r denotes the iteration count.

Proposition 5: Let r = 1, 2, . . . be the iteration count. Let
c(r) := −2Aµ(r) + b denote the gradient of the objective of
(43) at µ(r). Construct the following iteration process

µ(r+1) = µ(r) + βr · (s(r) − µ(r)) (45)

where s(r) := [s
(r)
1 , s

(r)
2 , . . . , s

(r)
N ]⊤, s

(r)
j :=

∑N
i=1 Q

∗(r)
ij ,

∀j ∈ [N ],

Q∗(r) := argmaxQ
∑N

i=1

∑N
j=1 c

(r)
j ·Qij

s.t.


∑N

i=1

∑N
j=1 CijQij ≤ θ0,∑N

j=1 Qij = µ̄i, ∀i ∈ [N ],

Qij ≥ 0, ∀i, j ∈ [N ],
(46)

and the step size βr := 2
r+1 ,∀r. Then µ(r) converges to an

optimal solution of (43), as r → ∞. [Note that the solution
of (43) might not be unique.]

Proof: See Appendix D. □
Note that the sub-problem in (46) is a N2-variate linear

program that can be solved by the simplex method. However,
the sub-problem (46) still introduces higher computational
burdens to the solution method under the Wasserstein distance
compared to the solution method under the KL divergence.
To be specific, the computational complexity of the simplex
method for (46) in the worst case is exponential in N2; no
better theoretical results are reported for the generic simplex
method although it performs well empirically. However, the
root-finding sub-problem in Algorithm 2 in the online supple-
mentary materials is just polynomial in N if Newton’s method
is employed.

Remark 5: Note that in the Wasserstein case, (26) in Line
8 of Algorithm 1 should be replaced with (43). □

Remark 6: Different statistical similarity measures define
different ambiguity sets (e.g., different geometric shapes), and
different ambiguity sets further lead to different robust state
estimation results [30]. Therefore, in practice, if computational
powers allow, one can try all possible ambiguity sets to obtain
better performance on specific problems. □

APPENDIX D
PROOF OF PROPOSITION 5

This proposition specifies the Frank-Wolfe method [41] for
the problem (43). Let s(r) solve the objective-linearized sub-
problem of (43)

s(r) = argmax
µ

[c(r)]
⊤
µ

s.t.


∑N

i=1

∑N
j=1 CijQij ≤ θ0,∑N

j=1 Qij = µ̄i, ∀i ∈ [N ],∑N
i=1 Qij = µj , ∀j ∈ [N ],

Qij ≥ 0, ∀i, j ∈ [N ].
(47)

By plugging in µj :=
∑N

i=1 Qij ,∀j ∈ [N ] into the objective,
(47) can be written as (46), which is a linear program that
can be efficiently solved by the simplex method. In (45), the
vector s(r) − µ(r) gives a feasible direction along which the
current solution µ(r) can be improved to µ(r+1). The step size
βr can be βr := 2

r+1 ,∀r [41]. Since the objective function
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of (43) is concave and continuously differentiable, and the
feasible region of (43) is a simplex (thus compact and convex)
after dropping the minimization operator in the first constraint,
according to [41, Theorem 1], this proposition holds. □

APPENDIX E
PROOF OF THEOREM 1

We first prove the first part: for every given Σj,v , if
Σ1 ⪰ Σ2, we have TrPj(Σ1,Σj,v) ≥ TrPj(Σ2,Σj,v). We
consider two optimization problems:

U1 = argmax
U

TrU

s.t.


[

Σ1 −U Σ1H
⊤
j

HjΣ1 HjΣ1H
⊤
j +Σj,v

]
⪰ 0,

U ⪰ 0.
(48)

U2 = argmax
U

TrU

s.t.


[

Σ2 −U Σ2H
⊤
j

HjΣ2 HjΣ2H
⊤
j +Σj,v

]
⪰ 0,

U ⪰ 0.
(49)

Since HjΣ1H
⊤
j +Σj,v ≻ 0 and HjΣ2H

⊤
j +Σj,v ≻ 0, by

Schur complement, we have U1 = Σ1−Σ1H
⊤
j (HjΣ1H

⊤
j +

Σj,v)
−1HjΣ1 and U2 = Σ2 − Σ2H

⊤
j (HjΣ2H

⊤
j +

Σj,v)
−1HjΣ2. On the other hand,[

U 0
0 0

]
⪯

[
Σ2 Σ2H

⊤
j

HjΣ2 HjΣ2H
⊤
j +Σj,v

]
⪯

[
Σ1 Σ1H

⊤
j

HjΣ1 HjΣ1H
⊤
j +Σj,v

]
,

which implies that the feasible region of (48) is larger than
that of (49). Therefore, U1 ⪰ U2, and Pj(Σ1,Σj,v) −
Pj(Σ2,Σj,v) = U1 −U2 ⪰ 0.

Next, we prove the second part: for every given
Σj,x, if Σ1 ⪰ Σ2, we have TrPj(Σj,x,Σ1) ≥
TrPj(Σj,x,Σ2). Since Pj(Σj,x,Σ1) = Σj,x −
Σj,xH

⊤
j (HjΣj,xH

⊤
j + Σ1)

−1HjΣj,x, Pj(Σj,x,Σ2) =
Σj,x−Σj,xH

⊤
j (HjΣj,xH

⊤
j +Σ2)

−1HjΣj,x, the conclusion
is obvious due to basic algebra. □

APPENDIX F
QUANTIFY UNCERTAINTY USING WASSERSTEIN SETS

If we use the Wasserstein ambiguity sets for Pj,x,y as in
[13], the problem (33) is particularized into

max
Σj,x

Σj,v

Tr[Σj,x +Σj,v]

s.t.


Σj,xH

⊤
j = Kj · (HjΣj,xH

⊤
j +Σj,v),√

Tr[Σj,x +Mj − 2(M
1
2
j Σj,xM

1
2
j )

1
2 ] ≤ θj,x,√

Tr[Σj,v +Rj − 2(R
1
2
j Σj,vR

1
2
j )

1
2 ] ≤ θj,v,

Σj,x ⪰ 0,Σj,v ⪰ 0.
(50)

where θj,x ≥ 0 and θj,v ≥ 0. Problem (50) is a nonlinear
positive semi-definite program (SDP). However, it has a linear
reformulation, which can be efficiently solved.

Proposition 6: The nonlinear positive SDP (50) can be
reformulated into a linear positive SDP

max
Σj,x,Σj,v

Vj,x,Vj,v

Tr[Σj,x +Σj,v]

s.t.



Σj,xH
⊤
j = Kj · (HjΣj,xH

⊤
j +Σj,v),

Tr[Σj,x +Mj − 2Vj,x] ≤ θ2j,x,[
M

1
2
j Σj,xM

1
2
j Vj,x

Vj,x I

]
⪰ 0,

Tr[Σj,v +Rj − 2Vj,v] ≤ θ2j,v,[
R

1
2
j Σj,vR

1
2
j Vj,v

Vj,v I

]
⪰ 0,

Σj,x ⪰ 0,Σj,v ⪰ 0,Vj,x ⪰ 0,Vj,v ⪰ 0.
(51)

Proof: By introducing M
1
2
j Σj,xM

1
2
j ⪰ V 2

j,x where
Vj,x ⪰ 0 and using Schur complement, the nonlinear con-

straint
√

Tr[Σj,x +Mj − 2(M
1
2
j Σj,xM

1
2
j )

1
2 ] ≤ θj,x in (50)

can be reformulated into a linear equivalent
Tr[Σj,x +Mj − 2Vj,x] ≤ θ2j,x,[
M

1
2
j Σj,xM

1
2
j Vj,x

Vj,x I

]
⪰ 0,

Vj,x ⪰ 0.

The constraint
√

Tr[Σj,v +Rj − 2(R
1
2
j Σj,vR

1
2
j )

1
2 ] ≤ θj,v in

(50) can be handled similarly. This completes the proof. □
Remark 7: Note that in the Wasserstein case, (34) in Line

5 of Algorithm 1 should be replaced with (51). □

APPENDIX G
PROOF OF THEOREM 2

To begin with, we drop the first constraint Σj,xH
⊤
j = Kj ·

(HjΣj,xH
⊤
j +Σj,v) and solve the following relaxed problem:

max
Σj,x,Σj,v

Tr[Σj,x +Σj,v]

s.t.

 (1− θj,x)Mj ⪯ Σj,x ⪯ (1 + θj,x)Mj ,
(1− θj,v)Rj ⪯ Σj,v ⪯ (1 + θj,v)Rj ,
Σj,x ⪰ 0,Σj,v ⪰ 0.

The solution of this relaxed problem is obviously given in (35).
By verifying that the solution (35) also satisfies the constraint
Σj,xH

⊤
j = Kj · (HjΣj,xH

⊤
j +Σj,v) where Kj is defined

in (29), we complete the proof. □
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