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Supplementary Materials

APPENDIX A
ON MODEL UNCERTAINTIES

In the signal processing [55, Chapter 1], [41] and automatic
control [56, Chapter 9] communities (and also many other
fields), a nominal model O =M(I) is said to be uncertain if
it is not guaranteed to be exactly the same as the true governing
model O = M0(I), where O denotes the output and I the
input. Other equivalent terms to “uncertain model” that are
widely used include “mismatched model”, “deviated model”,
and “perturbed model”, etc. Possible cases are as follows.

1) Parameter Uncertainty. Suppose the nominal model
O = M(I;β) is parameterized by β. If the model
type is exact and only the parameter β is uncertain, the
model uncertainty is reflected by “parameter uncertainty”.
In state estimation contexts, a possible example is that
the true system model is guaranteed to be linear and
the noises are guaranteed to be Gaussian, but we do not
exactly know the system matrices and/or noise statistics.

2) Type Uncertainty. In state estimation contexts, an ex-
ample might be the case that the true system model
is nonlinear but we might use a linear nominal model.
Another example might be the case that the true system
model is known to be the one among candidate models.
However, at one time instant, we do not exactly know
which candidate model is governing the true plant [15],
[36]. In this case, one may also call it “mode uncertainty”.

3) Measurement Outlier. If outliers unexpectedly exist
in measurements, the nominal measurement distribution
might deviate from the true measurement distribution.
In linear-system state estimation contexts, a possible
example is that the nominal measurement noise model
is Gaussian, whereas the true measurement noise model
is fat-tailed (e.g., Laplacian, Student’s t).

The list is not exhaustive, however, most common in practice.

APPENDIX B
PROOF OF LEMMA 1

This lemma is a special case of [62, Theorem 1.3]. With the
facts in [62, Remark 1.12], the statements in this lemma can
be obtained. However, the proof of [62, Theorem 1.3] is rather
complicated because it dealt with a more general problem and
conducted many advanced analyses; it is not motivational for
the contexts of this article. Below gives a new and concise
proof because it is necessary for insights in Fig. 1.

First, by noting that p(xQ) = q(x) =
∑N
i=1 qiδxi(x) and∫

qiδxi(x)dx = qi, we have

infπ(xP,xQ)

∫∫
‖xP − xQ‖π(xP,xQ)dxPdxQ

= infI(xQ|xP)

∫∫
‖xP − xQ‖ I(xQ|xP)p(xP)

p(xQ) p(xQ)dxPdxQ

= infI(xi|xP)

∑N
i=1

∫
‖xP − xi‖ I(x

i|xP)p(xP)
p(xQ)|xQ=xi

qidxP

= infI(xi|xP)

∑N
i=1

∫
‖xP − xi‖I(xi|xP)p(xP)dxP

= infI(xi|x)

∑N
i=1

∫
‖x− xi‖I(xi|x)p(x)dx.

The first equality holds because when reformulating the
Wasserstein distance, the marginals Px and Qx are fixed.

The infimum optimization problem above has a clear physical
meaning in transport theory: we aim to move all the resources
(that are continuously distributed) in the whole region to
some fixed facilities {xi}i=1,2,...,N . At every point x, the
normalized amount of resources are p(x). The proportion of
p(x) to be moved from x to the facility xi is I(xi|x). The
cost to move every unit of resources from x to xi is ‖x−xi‖.
Therefore, the Wasserstein distance denotes the minimum
transport cost to move a distribution from one support set to
another. Since I(xi|x) are conditional distributions, implicit
constraints are

∫
I(xi|x)p(x)dx = qi, ∀i ∈ [N ],∑N

i=1 I(xi|x) = 1, ∀x,
I(xi|x) ≥ 0, ∀i ∈ [N ],∀x.

Second, we write the Lagrange dual problem

supλi
infI(xi|x)

∑N
i=1

∫
‖x− xi‖I(xi|x)p(x)dx+∑N

i=1 λi
[
qi −

∫
p(x)I(xi|x)dx

]
s.t.

∑N
i=1 I(xi|x) = 1, ∀x,

I(xi|x) ≥ 0, ∀i ∈ [N ],∀x.

The sup-inf objective function also writes

supλi
infI(xi|x)

∫ ∑N
i=1(‖x− xi‖ − λi)I(xi|x)p(x)dx+∑N

i=1 λiqi.

Now we recall the physical meaning of I(xi|x) from perspec-
tive of optimal transport: it denotes the proportion of p(x) to
be moved to xi; i.e., I(xi|x) are weights. As a result, we have

mini{‖x−xi‖−λi} ≤
∑N
i=1(‖x−xi‖−λi)I(xi|x), ∀x,

where I(xi|x) = 1 for the i letting the equality strictly
hold, and I(xi|x) = 0 otherwise. The above inequality holds
because the weighted mean of a vector is no less than the
minimum element in this vector. This gives the dual problem

sup
λi

∫
min
i∈[N ]
{‖x− xi‖ − λi}p(x)dx+

N∑
i=1

λiqi.

Note that the strong duality holds because the primal optimiza-
tion problem is convex, and the relative interior point p(xQ)
satisfies the Slater’s condition: when p(xP) := p(xQ), the
optimal solution I(xi|xi) = 1 and I(xi|xj) = 0,∀j 6= i.
Since the value of I(xi|x) is either one or zero, all p(x)
near xi are moved to xi, and the cumulative at xi is qi
(n.b.,

∫
I(xi|x)p(x)dx = qi). This implies a region-partition

operation: the sub-region Ci is defined by such a set of x that
satisfies ‖x − xi‖ − λi ≤ ‖x − xj‖ − λj , ∀j 6= i. In other
words,

∫
Ci
p(x)dx = qi, ∀i ∈ [N ]. �
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APPENDIX C
PROOF OF THEOREM 3

We first consider the case when θ > 0. Let g(x,λ) :=
mini∈[N ]

{
‖x− xi‖ − λi

}
. The Lagrange dual problem is

min
v0≥0,v1

max
p(x)

∫
−p(x) ln p(x)dx+ v0·{

θ −max
λ

[∫
p(x) min

i∈[N ]

{
‖x− xi‖ − λi

}
dx+

N∑
i=1

qiλi

]}

+ v1

[
1−

∫
p(x)dx

]
= min
v0≥0,v1

max
p(x)

min
λ

v0 ·

(
θ −

N∑
i=1

qiλi

)
+ v1+∫

−[ln p(x) + v0g(x,λ) + v1]p(x)dx.

For every two bounded functions f1 and f2 that have the
same support, min(f1 + f2) ≥ min f1 + min f2. Therefore,
it is easy to verify that the objective function is convex in
terms of λ and concave in terms of p(x) by the original
definitions of convexity and concavity. Since the objective
function is concave and constraint-free in terms of p(x),
we use the varitional method to maximize it over p(x).
Let L[p(x)] :=

∫
−[ln p(x) + v0g(x,λ) + v1]p(x)dx be a

functional of p(x). The variation of L[p(x)] is

δL[p(x)] =
∂L[p(x) + εh(x)]

∂ε

∣∣∣∣
ε=0

=

∫
− [ln p(x) + 1 + v0g(x,λ) + v1]h(x)dx,

where h(x) ∈ L1 is an arbitrary function.
Let δL[p(x)] = 0 and according to the fundamental lemma

of calculus of variations, we have

[ln p(x) + 1 + v0g(x,λ) + v1] ≡ 0,

almost everywhere. This gives the form of p(x) in (16).
Substituting p(x) back into the objective of the Lagrange dual
problem gives (17). The strong duality holds because (15)
is concave and Qx is a relative interior point at which the
inequality constraint in (15) is strictly satisfied (due to θ > 0)
and the equality constraint in (15) simultaneously holds (i.e.,
the Slater’s conditions are met).

When θ = 0, the gradient in (19) vanishes if and only if
Px = Qx. Therefore, (16) and (17) also work for θ = 0. In
summary, this theorem works for all θ ≥ 0. �

APPENDIX D
PROOF OF LEMMA 2

This lemma is a special case of [62, Theorem 1.3]. One
can also prove it using the standard Lagrange dual theory (cf.
Appendix B). We do not give details due to necessity. �

APPENDIX E
PROOF OF THEOREM 4

The proof is straightforward by writing the Lagrange dual
problem and differentiating with respect to Pij . The strong
duality holds: (25) is concave and {P 0

ij}∀i,∀j is assumed to
be a relative interior point satisfying the Slater’s conditions.
In the special case when M = N , and Px and Qx have the
same support, P 0

ij can be constructed as follow:

P 0
ij =

{
qi, if i = j,
0, otherwise,

which is resulted from letting Px := Qx. In a general case
when M 6= N or they have different supports, to guarantee
the existence of P 0

ij , we must let θ be strictly larger than

min
Pij

N∑
i=1

M∑
j=1

‖xi−xj‖·Pij over all Pij such that
∑M
j=1 Pij =

qi, ∀i ∈ [N ]. Note that unlike Theorem 3, we additionally
require the existence of P 0

ij . This is because the reference
distribution Qx in this case is no longer guaranteed to be a
relative interior point that satisfies the Slater’s conditions. �

APPENDIX F
PROOF OF THEOREM 6

If θ = 0, the maximum entropy distribution solving (34) is
q itself. Below discusses the case when θ > 0. The Lagrange
dual problem of (34) is

min
λ0≥0,λ1

max
pi

∑N
i=1−pi ln pi

+λ0 ·
[
θ −

∑N
i=1 pi ln (piqi )

]
+λ1 ·

[
1−

∑N
i=1 pi

]
.

It is concave, smooth, and constraint-free with respect to pi.
Therefore, the optimal solution of pi is obtained by the first-
order optimality condition, i.e.,

−(λ0 + 1) · [ln(pi) + 1] + λ0 ln(qi)− λ1 = 0.

This gives (35). Substituting (35) back into the objective of the
Lagrange dual problem, we have (36). Since (34) is concave,
and q is a relative interior point in the feasible region of (34)
such that the inequality is strictly satisfied (due to θ > 0) and
the equality is met, the strong duality holds due to the Slater’s
condition. Namely, if λ0 and λ1 solve (36), pi in (35) solves
(34). When θ = 0, the gradient (37) vanishes if and only if
p = q; i.e., (35) and (36) also work for the case when θ = 0.
In summary, this theorem works for all θ ≥ 0. �

APPENDIX G
MAXIMUM ENTROPY DISTRIBUTIONS

A. Continuous Maximum Entropy Distribution Using Wasser-
stein Distance

We consider a two-dimensional continuous rectangular re-
gion [0, 1]×[0, 1]. Let x be a 2-dimensional prior state particle:
x1 denote the horizontal axis and x2 the vertical axis. Suppose
the reference discrete prior state distribution q is supported on
six points, which are randomly sampled from the rectangle.
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(a) Optimal Partition. (b) Maximum Entropy Distribution.

Fig. 7. Optimal partition and maximum entropy distribution. The whole rectangular region is partitioned into six sub-regions. Red-filled circles in (a) indicate
the supports of the reference distribution q. Peaks in (b) correspond to the the supporting points of q.

TABLE IV
THE REFERENCE DISTRIBUTION

x1 x2 x3 x4 x5 x6

Points 0.5007 0.2397 0.7338 0.7065 0.3739 0.4450
0.8763 0.1513 0.0323 0.6066 0.1581 0.4139

Weights 0.0583 0.2695 0.0340 0.3496 0.1453 0.1433

Their weights are also randomly determined. The points and
their weights are displayed in Table IV.

We use Theorem 3 and its corresponding projected gradient
descent method to find the continuous maximum entropy dis-
tribution. The uncertainty budget θ is set to θ := 0.025 (only
for a possible demonstration; other values also applicable).
In the projected gradient descent procedure, the step size
α := 0.05 and the maximum allowed iteration steps S := 500.
The results are shown in Fig. 7. The Monte Carlo integration
method is used to evaluate integrals in (19), (20), and (21);
for every Monte Carlo sample x, it belongs to Ci if

‖x− xi‖ − λi ≤ ‖x− xj‖ − λj , ∀j 6= i.

B. Discrete Maximum Entropy Distribution Using Kullback-
Leibler Divergence

The reference distribution q and the induced maximum
entropy distribution p are displayed in Table V and Fig. 8. p is
calculated by Theorem 6. Since they have the same support set,
we do not explicitly demonstrate what the particles xi are. The
uncertainty budget θ is set to θ := 0.0075 (only for a possible
demonstration; other values also applicable). In the projected
gradient descent procedure, the step size α := 0.05 and the
maximum allowed iteration steps S := 500. From Table V
and Fig. 8, we can see that p are more balanced than q: the
minimum of p is larger than that of q (when i = 4), while
the maximum of p is smaller than that of q (when i = 2).

C. Discrete Maximum Entropy Distribution Using Wasserstein
Distance

We let the reference discrete distribution q explicitly be a
likelihood distribution of one (worst-case) prior state particle

TABLE V
THE REFERENCE DISTRIBUTION AND ITS INDUCED MAXIMUM ENTROPY

DISTRIBUTION (USING KULLBACK-LEIBLER DIVERGENCE)

x1 x2 x3 x4 x5 x6

q 0.1993 0.2907 0.0974 0.0492 0.1505 0.2128
p 0.1934 0.2492 0.1196 0.0756 0.1602 0.2021
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Fig. 8. The maximum entropy distribution p (left bar at each i) induced by
the reference distribution q (right bar at each i) using the Kullback-Leibler
Divergence.

x. Suppose q and its induced maximum entropy distribution p
have different support sets, as displayed in Fig. 9. The support
set {yr|x}r∈[R] of q consists of particles propagated from a
2-dimensional nonlinear measurement equation{

yr1 = | sin (x1 + x2 + vr1)|,
yr2 = | cos (ex1×x2+vr2 )|, ∀r ∈ [4]

where x := [x1, x2]T := [0, 0]T is the fixed prior state
particle, and measurement noises vr1 and vr2 are sampled from
a uniform distribution U [0, 1]. The support set of p, however, is
constructed by five uniformly sampled points (i.e., green-filled
squares No. 1 ∼ 5) and a new measurement (i.e., green-filled
square No. 6). Randomly setting the reference distribution

q := [0.3700, 0.3194, 0.0610, 0.2496]T ,

then the induced maximum entropy distribution p is given as

p = [0.2641, 0.1272, 0.3440, 0.2513, 0.0071, 0.0064]T ,
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where p is obtained by Theorem 5. The uncertainty budget
θ is set to θ := 0.325 (only for a possible demonstration;
other values also applicable). In the projected gradient descent
procedure, the step size α := 0.05 and the maximum allowed
iteration steps S := 500. As expected, although the support
sets are different, we can still calculate the weights of new
supporting points of p, and the worst-case likelihood of the
new measurement is evaluated as 0.0064. This small-valued
likelihood result coincides with our intuition because the new
point No. 6 is far away from the supports (i.e., red-filled
circles) of q.
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Fig. 9. The maximum entropy distribution p induced by the reference
distribution q using the Wasserstein distance. Red-filled circles are supports
of q, while green-filed squares are supports of p.

Alternatively, we may suppose the support set of p is
constructed by the union of the support set of q and the
new measurement. The supporting points of q are uniformly
sampled from [0, 1] × [0, 1]. We have the results in Table
VI, in which y5 is a new measurement uniformly sampled
from [0, 1]× [0, 1] as well. The uncertainty budget θ is set to
θ := 0.01 (only for a possible demonstration; other values also
applicable). In the projected gradient descent procedure, the
step size α := 0.05 and the maximum allowed iteration steps
S := 500. From Table VI, it can be seen that the likelihood
(of the associated worst-case prior state particle) at this new
measurement is 0.0260.

TABLE VI
THE REFERENCE DISTRIBUTION AND ITS INDUCED MAXIMUM ENTROPY

DISTRIBUTION (USING WASSERSTEIN DISTANCE)

y1 y2 y3 y4 y5

Points 0.4314 0.6146 0.0059 0.5459 0.6206
0.5779 0.2699 0.8958 0.1993 0.3924

Weights (q) 0.3438 0.1316 0.3191 0.2055 �
Weights (p) 0.3372 0.1327 0.3191 0.1850 0.0260
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