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Robust State Estimation for Linear Systems Under
Distributional Uncertainty
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Abstract—Modeling uncertainties for real linear systems are
unavoidable. These uncertainties can significantly degrade the per-
formance of optimal state estimators designed for nominal system
models. The challenge is quantifying such uncertainties and de-
vising robust estimators that are insensitive to them. This paper
is therefore concerned with distributionally robust state estimation
for linear Markov systems. We propose a new modeling framework
that describes uncertainties using a family of distributions so that
the worst-case robust estimate in the state space is made over the
least-favorable distribution. This framework uses only one or two
scalars to express the uncertainty set and does not require the
structural information of model uncertainties. Furthermore, the
moment-based ambiguity set is suggested to embody the distri-
butional uncertainty family. As a result, the estimation problem
transforms into a nonlinear semidefinite program with linear con-
straints, which can be analytically and efficiently solved. Intensive
experiments illustrate the advantages of the proposed framework
over existing methods.

Index Terms—State estimation, linear system, distributional
robustness, model uncertainty, moment ambiguity set, nonlinear
semidefinite programming.

I. INTRODUCTION

A. Subject Matter

S TATE estimation for linear systems is critical in several
areas, such as target tracking, power system monitoring,
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geodesy, control and automatics (e.g., robotics), and astronau-
tics (e.g., satellite attitude determination). Mathematically, we
are concerned with the state estimation problem for the linear
system [1]–[3]{

xk = F k−1xk−1 +Gk−1wk−1,
yk =Hkxk + vk,

(1)

where k denotes the discrete time, xk ∈ L2
n(dPxk

) ⊂ Rn is
the state vector, yk ∈ L2

m(dPyk
) ⊂ Rm is the measurement

vector, andwk−1 ∈ L2
p(dPwk−1) ⊂ Rp and vk ∈ L2

m(dPvk
) ⊂

Rm are the process noise and measurement noise, respectively.
L2
c(dP ) denotes a c-dimensional L2 space equipped with the

probability measure dP rather than the usual Lebesgue measure.
In the canonical settings [1]–[3], the linear system (1) is assumed
to hold the following properties:

1) x0 ∼ Nn(x̄0,Π0), wk ∼ Np(μ
w
k ,Qk), and vk ∼

Nm(μvk ,Rk), where Nd(μ,Σ) denotes a d-dimensional
Gaussian distribution with mean μ and covariance Σ;

2) ∀j �= k, Ewkx
T
0 = 0, EvkxT

0 = 0, Ewkw
T
j = 0, and

EvkvTj = 0;
3) ∀k, j, EvkwT

j = 0;
4) μwk ,μvk are exactly known and typicallyμwk ≡ 0,μvk ≡ 0;
5) Qk andRk are exactly known;
6) F k−1,Gk−1, andHk are exactly known.
It is well known that the reputed Kalman filter gives the opti-

mal solution to the above problem in the sense of the following:
(a) the (linear unbiased) minimum variance estimation [3]; (b)
the least/minimum mean square error estimation [2], [4], [5];
(c) the regularized least square estimation [6]; (d) the Bayesian
a posteriori mean estimation of xk conditioned on the mea-
surement process {yi} where 0 ≤ i ≤ k [4], [7] (also recall
Sherman’s theorem); or (e) the orthogonal projection ofxk onto
the stochastic Hilbert space spanned by the corresponding in-
novation process (or equivalently, spanned by the measurement
process {yi}where 0 ≤ i ≤ k) generated from the linear system
(1) [2], [8].

However, for many real problems in engineering, the assump-
tions are always violated either individually or in batch form. In
other words, the system (1) usually suffers from nontrivial and
uncertain modeling errors, e.g., uncertain channel characteris-
tics in wireless communication [9], [10], unknown maneuvers
in target tracking [11], [12], uncertain attacks/faults in sensor
networks [13], unknown noise statistics of sensors [14], and
outliers in ultrawideband (UWB) range measurements [15]. The
solutions are standard for cases when assumptions 1), 2), and
3) are breached, for example, non-Gaussian (e.g., heavy-tailed)
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Kalman-like filters [16]–[19] and correlated/colored Kalman
filters [1], [3]. However, Ewkx

T
0 = 0 and EvkxT

0 = 0 are
always required. Thus, in this paper, we consider only modeling
uncertainties 4), 5), and 6) for the linear system (1).

B. Literature Review

Many categories of methods have been developed to address
the state estimation problem for the linear system (1) under
uncertainties 4), 5), and/or 6). According to the appearance time
and philosophical/mathematical complexity of the first inspira-
tional work in each category, we can assign these methodological
categories into five generations.

The first-generation methods include representative subopti-
mal filters, such as fading-memory Kalman-like filters [20]–
[22], adaptive Kalman-like filters [23]–[25], multiple-model
Kalman bank filters [26], [27], and finite-horizon-memory
Kalman-like filters [28, Section V], [29]. These methods rep-
resent the first to be considered in practice due to their high
computational efficiency (at least for some specific problems)
and simplicity.

The second-generation methods include robust Kalman filters
for uncertain noise variances [30], [31],H∞ filters [28], [32], set-
valued Kalman-like filters [33], risk-sensitive (i.e., exponential-
cost) Kalman-like filters [8], [34], [35], guaranteed-cost (i.e.,
upper-bound [11], [36]) Kalman-like filters [37], and their exten-
sions. These filters are robustified by minimizing the worst-case
estimation error while sacrificing the estimation performance
under nominal conditions. The main disadvantage of this gener-
ation is that the existence or stability conditions at every time step
must be guaranteed by adjusting some parameters (e.g., γ in Eq.
(8) of [28], or αk in [11]), which prevents online operations [6].
Extensions to these methods involve making a trade-off between
robustness and performance [38], [39] or considering a greater
number of general uncertainty types [39]–[41].

The third-generation methods include unknown-input
Kalman-like filters [42]–[47] and filters for stochastic
parametric uncertainties [9], [48], [49]. Specifically, the
unknown-input Kalman-like filters treat modeling uncertainties
as unknown inputs exerted on the nominal model, while the
filters for stochastic parametric uncertainties regard modeling
uncertainties as random variables/vectors imposed on nominal
system matrices (i.e.,F k,Gk, andHk). Moreover, in stochastic
parametric uncertainty settings, the autocorrelation matrix of
the state vector is typically assumed to lie in a predesigned
polytope [9], [48]. These two categorical methods are suitable
(sometimes highly effective) for some specific settings of
system uncertainties when fortunately given the structural
information of the system’s uncertainties, for example, given
Gk in [42] or given Eq. (3) in [9]. Notable extensions include
solutions for the case where unknown inputs and measurement
outliers exist simultaneously [46], as well as for the case where
unknown inputs exist in multiple-model settings [47], etc.

The fourth-generation methods are represented by [6], where
the modeling uncertainties are norm-constrained and added
to nominal system matrices. Although classic and popular in
state-space estimation theory, the framework in [6] has a major

limitation in that it is difficult to determine the structural param-
eters, for example, to select the proper structures of M i, Δi,
Ef,i, and Eg,i in Eq. (41) of [6], because they are usually ma-
trices/vectors with many entries to be designed. The extensions
of this framework include [50]–[52], etc.

This paper studies a new framework that is as general as
the third-generation representatives in [9], [42] and the fourth-
generation representative in [6]. However, it does not require
a filter designer to determine the structure of the modeling
uncertainties (e.g., Gk in [42]; F i,k−1, Gi,k−1 in [9]; M i, Δi,
Ef,i, and Eg,i in [6]), and only a few (typically one to two)
scalar parameters are employed to describe the uncertainties.
The new framework is termed the distributionally robust state
estimation for linear Markov systems and is a member of the
fifth-generation methods. In this new framework, the modeling
uncertainties are expressed using a family of probability distri-
butions. The worst-case state estimator, i.e., the robust estimator,
takes effect over the least-favorable distribution.

Note that the literature is listed in perspective, not in strict
chronology. Further discussions on the mentioned state-of-the-
art frameworks are presented in Section V.

C. Highlights of Contributions

1) We propose a new framework of robust state estimation
for the linear system (1), which requires only a few scalar
parameters to describe the modeling uncertainties.

2) We use the moment-based ambiguity set to express the
modeling uncertainties so that the distributionally ro-
bust state estimation problem can be reformulated into a
nonlinear semidefinite program (NSDP) with linear con-
straints.

3) We present an analytical and computationally efficient
method to solve the associated NSDP.

4) We prove that the traditional fading-memory Kalman-like
filter, which was empirically invented, is a distributionally
robust state estimation solution.

D. Paper Structure

In Section II, preliminaries on distributionally robust op-
timization, optimal estimation, and an optimization trick are
reviewed. Section III formulates the distributionally robust state
estimation problem for the linear system (1), and the solution
under the moment-based ambiguity set is discussed in Sec-
tion IV. Section V compares the proposed distributionally robust
state estimation framework with existing methods, in which the
distinctions, advantages, and disadvantages of different frame-
works are highlighted. In Section VI, intensive experiments are
conducted to compare the performance of the proposed estimator
with that of existing state estimators. The conclusions presented
in Section VII complete this paper.

E. Notations

Rd denotes the d-dimensional Euclidean space. L2
c(dP ) de-

notes a c-dimensional L2 space equipped with the probability
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measure dP rather than the usual Lebesgue measure. EX de-
notes the expectation of the random matrix X . Tr[A] indicates
the trace of a square matrixA. Let I and 0 represent an identity
and a null matrix with appropriate dimensions, respectively.
Let [·]T denote the transpose of a matrix. If A and B are
deterministic matrices, 〈A,B〉 := Tr[ATB]. However, ifx and
y are random vectors (column by default) in L2

c(dP ), then
〈x,y〉 := ExyT defines the inner product in this stochastic
Hilbert space L2

c(dP ). We use Sd as the collection of all d-
dimensional symmetric matrices in Rd×d, and Sd

+ (resp. Sd
++) of

alld-dimensional symmetric positive semidefinite (resp. positive
definite) matrices in Sd. For any matrices A and B in Sd,
let A � B mean that A−B ∈ Sd

+ and A 
 B mean that
A−B ∈ Sd

++. LetNd(μ,Σ) denote ad-dimensional Gaussian
distribution with mean μ and covariance Σ. Let Dd(μ,Σ)
denote any distribution including but not limited to a Gaus-
sian. For any deterministic vector x (column by default), we
use ‖x‖ :=

√
xTx (resp. ‖x‖W :=

√
xTWx) to denote its

(resp. weighted) Euclidean norm. Let Y k denote the set of
measurements {y0,y1,y2, . . . ,yk}. We use x̂ to indicate an
estimate of the random vector x and x̃ := x− x̂ the estimation
error. Therefore, the corresponding estimation error covariance
is 〈x̃, x̃〉 if x̂ is an unbiased estimate. Alternatively, 〈x̃, x̃〉
denotes the mean square estimation error if x̂ is biased. See
Appendix A for further details.

II. PRELIMINARIES

A. Distributionally Robust Optimization

Distributionally robust optimization, originating from statis-
tical game theory (cf. mixed strategy) [53] and robust statis-
tics [54], is currently popular in academic communities, such as
the fields of operations research [55], machine learning [56], and
systems control [57]. Suppose the domain of the decision vector
x is X and the parameter vector of an optimization problem is
ξ with its support Ξ. In many application scenarios, we do not
know the real distribution Pξ of ξ. However, we can assume
that Pξ lies in a family of distributions F with some properties.
Therefore, we have a robust optimization problem over F that
considers the parameters’ uncertainties as

inf
x∈X

sup
Pξ∈F

EPξ
[f(x, ξ)], (2)

where f(·, ·) is the objective function. Here, F is termed as a
ambiguity set, given as

F =

⎧⎨
⎩Pξ

∣∣∣∣∣∣
ξ ∼ Pξ
Pξ(ξ ∈ Ξ) = 1
other requirements

⎫⎬
⎭ .

Thus, the ambiguity set F forms a distributional uncertainty
space for the modeling uncertainties of the objective func-
tion f(·, ·). Typically, the said “other requirements” could be
some constraints imposed on the moments of ξ [58] or a
metric/divergence of distributions such as the Kullback–Leibler

(KL) divergence [59]

FKL =

⎧⎨
⎩Pξ

∣∣∣∣∣∣
ξ ∼ Pξ
Pξ(ξ ∈ Ξ) = 1
KL(Pξ‖P̄ξ) ≤ θ

⎫⎬
⎭ , (3)

or the Wasserstein metric [60]

FW =

⎧⎨
⎩Pξ

∣∣∣∣∣∣
ξ ∼ Pξ
Pξ(ξ ∈ Ξ) = 1
W(Pξ, P̄ξ) ≤ θ

⎫⎬
⎭ , (4)

or others including the τ -divergence [35], φ-divergence [59],
α/β/γ-divergence [61], etc., where KL(·‖·) defines the KL
divergence, W(·, ·) defines the Wasserstein metric, and we sup-
pose that the nominal distribution of ξ is P̄ξ. Intuitively, FKL

andFW mean that although we do not know the real underlying
distribution Pξ, we believe that Pξ lies in a ball centered at P̄ξ
with a radius of θ.

Suppose that x∗ and P ∗ξ solve the distributionally robust
optimization problem (2). We term x∗ the worst-case robust
solution and P ∗ξ the least-favorable (i.e., worst-case) distribution.

B. Optimal Estimation

The linear system model (1) induces two stochastic vector
processes {xk} and {yk}, where k = 0, 1, 2, · · · and ∀k, xk ∈
L2
n(dPxk

), yk ∈ L2
m(dPyk

). Let H′Y k
denote the stochastic

Hilbert space generated by {yk} up to and including k [62]

H′Y k
:=

⎧⎨
⎩g(y0,y1, . . .,yk)

∣∣∣∣∣∣g : Rm × · · · ×Rm︸ ︷︷ ︸
k+1

�−→ Rn

⎫⎬
⎭ ,

(5)
where g(·) is any second-moment-finite Borel measurable func-
tion, which might be nonlinear. Meanwhile, letHY k

denote the
stochastic Hilbert space spanned by {1,Y k} [62]

HY k
:=

{
bk +

k∑
i=0

Aiyi

∣∣bk ∈ Rn;A0, . . . ,Ak ∈ Rn×m
}
.

(6)
It is well known that the optimal estimate of xk given Y k in

the sense of minimum mean square error is the unique orthogonal
projection of xk onto H′Y k

. For the special case when {xk} ∪
{yk} are jointly Gaussian, the optimal estimate of xk given
Y k in the sense of minimum mean square error is the unique
orthogonal projection of xk onto HY k

. However, regardless of
whether it is Gaussian or not, the unique orthogonal projection
of xk onto HY k

gives the optimal linear estimation [62]. In
view of the optimal Bayesian posterior estimation theory [4],
[7] (cf. Sherman’s theorem), this projection point is the same as
the conditional mean of xk given Y k, i.e., x̂k = E(xk | Y k),
which minimizes the mean square estimation error [8]

x̂k = arginf
ψ(·)∈H′Y k

〈xk −ψ(Y k),xk −ψ(Y k)〉 (7)

whose joint state-measurement distribution is Pk(xk,Y k).
In particular, in the linear case (e.g., jointly Gaussian), this

optimal Bayesian estimator admits a linear form [8]

x̂k = x̄k +ΣxY,kΣ
−1
Y Y,k

[
Y k − Ȳ k

]
, (8)
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where x̄k and Ȳ k are a priori expectations of xk and Y k,
respectively, ΣxY,k := 〈xk − x̄k,Y k − Ȳ k〉, and ΣY Y,k :=
〈Y k − Ȳ k,Y k − Ȳ k〉. With a slight abuse of notation, we note
that in (8), Y k − Ȳ k := col{yi − ȳi}0≤i≤k,

〈xk,Y k〉 := [〈xk,y0〉, 〈xk,y1〉, . . ., 〈xk,yk〉] ,
and

〈Y k,Y k〉 := [〈yi,yj〉]0≤i,j≤k .
In other words, 〈Y k,Y k〉 is a block matrix, and the block-type

entry at the ith row and jth column is defined by 〈yi,yj〉. As a
result, the minimum mean square estimation error is given as

〈xk − x̂k,xk − x̂k〉 = Σxx,k −ΣxY,kΣ
−1
Y Y,kΣY x,k, (9)

where ΣY x,k = ΣT
xY,k and Σxx,k := 〈xk − x̄k,xk − x̄k〉. Eq.

(9) implies that introduction of the information of xk from
Y k helps reduce (resp. improve) the estimation error (resp.
performance) of xk. In contrast, if xk is statistically inde-
pendent of Y k, we have ΣxY,k ≡ 0, admitting x̂ = x̄ and
〈xk − x̂k,xk − x̂k〉 = Σxx,k; i.e., there is no improvement in
estimation performance after introducing Y k.

However, as a state estimation problem, the measurements
yk are available in sequence one by one, not in block as Y k.
Therefore, we need to design a time-incremental version [63]
(i.e., recursive form [8]) of the optimal estimator (8). Namely,

inf
ψk(·)∈H′yk

〈xk −ψk(yk),xk −ψk(yk)〉 (10)

with the joint state-measurement distribution conditioned on the
previous measurements Pk(xk,yk | Y k−1). Note that H′yk

is
different fromH′Y k

.
According to [8], (10) with Pk(xk,yk | Y k−1) is equivalent

to (7) with Pk(xk,Y k). Therefore, x̂k in (8) also reads

x̂k = x̄k +Σxy,kΣ
−1
yy,k [yk − ȳk] , (11)

where x̄k and ȳk are conditional a priori expectations
of xk and yk given Y k−1, respectively; Σxy,k :=
〈xk − x̄k,yk − ȳk〉; Σyy,k := 〈yk − ȳk,yk − ȳk〉. In
this case, x̄k = E(xk|Y k−1) = F k−1x̂k−1 and ȳk =
E(yk|Y k−1) =HkF k−1x̂k−1, leading (11) to

x̂k = F k−1x̂k−1 +Σxy,kΣ
−1
yy,k [yk −HkF k−1x̂k−1] , (12)

which has a recursive form from x̂k−1 to x̂k. In addition, the
minimum mean square estimation error reads

〈xk − x̂k,xk − x̂k〉 = Σxx,k −Σxy,kΣ
−1
yy,kΣyx,k, (13)

where Σyx,k = ΣT
xy,k and Σxx,k := 〈xk − x̄k,xk − x̄k〉.

Since the estimator (12) is unbiased, the minimum mean square
estimation error matrix coincides with the minimum estimation
error covariance matrix. The filter (12) is obviously the canonical
Kalman filter. Explicit expressions of Σxx,k, Σxy,k, and Σyy,k

are straightforward to derive and can also be obtained from the
canonical Kalman filter.

C. An Optimization Equivalence

Given a matrix variableX and its convex and compact domain
X , the optimization problems minX∈XX and minX∈X Tr[X]

have the same optimal solution X∗ since the trace operator
is monotonically increasing. Therefore, in this paper, when
we mention minimizing a matrix (recall that A � B means
A−B � 0), we mean minimizing its trace. See also Appendix
B.

III. DISTRIBUTIONALLY ROBUST STATE ESTIMATION

A. Motivations

If the nominal system model (1) is exact, the nominal
joint state-measurement distribution conditioned on the previ-
ous measurements Pk(xk,yk|Y k−1) induced from (1) is also
exact. Thus, the state estimation in (10) is optimal. How-
ever, when modeling uncertainties exist in (1), the true joint
state-measurement distribution conditioned on previous mea-
surements Qk(xk,yk|Y k−1) would deviate from the nominal
distribution Pk(xk,yk|Y k−1). Since we do not exactly know
Qk(xk,yk|Y k−1), motivated by distributionally robust opti-
mization theory, we consider the distributionally robust state
estimation counterpart of (10) at the time step k

inf
ψk∈H′yk

sup
Qk∈Pxk,yk |Y k−1

〈xk −ψk(yk),xk −ψk(yk)〉, (14)

which minimizes the mean square estimation error over the
worst-case distribution, where Pxk,yk |Y k−1 denotes the ambi-
guity set of Qk(xk,yk | Y k−1). If Pxk,yk|Y k−1 contains only
the nominal distribution Pk(xk,yk | Y k−1); i.e., we believe that
the nominal distribution is exact, the robust estimation problem
(14) reduces to the nominal estimation problem (10). Since
robust estimation (14) is obtained in the worst-case scenario,
the associated robust estimator would be insensitive to modeling
uncertainties.

With the robust estimation model (14) on hand, the next steps
are 1) to identify the explicit expression of the nominal distri-
bution Pk(xk,yk | Y k−1), 2) to explicitly define a proper form
of the ambiguity set Pxk,yk |Y k−1 around Pk(xk,yk | Y k−1),
and 3) to derive tractable reformulation(s) of (14) based on
Pxk,yk |Y k−1 . We will progressively work on the three problems
in the next subsection.

B. Moment-Based Distributionally Robust State Estimation

First, we find the nominal distribution Pk(xk,yk | Y k−1).
For notation brevity, let zk := [xT

k ,y
T
k ]

T . From (1), the nominal
distribution conditioned on xk−1 is known as

Pk(zk | xk−1) = Nn+m

([
F k−1

HkF k−1

]
xk−1,Σ◦k

)
, (15)

where

Σ◦k =[
Gk−1Q

1
2

k−1 0

HkGk−1Q
1
2

k−1 R
1
2

k

][
Gk−1Q

1
2

k−1 0

HkGk−1Q
1
2

k−1 R
1
2

k

]T

,

in which we note that the notation of the square root of a positive
semidefinite matrix isQ

1
2 (Q

1
2 )T = Q. For details of derivation,

see Appendix C. The extension of Σ◦k to the case where wk−1
and vk are correlated is straightforward. We do not discuss it
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here. Suppose that the conditional distribution of xk−1 given
Y k−1 is Qk−1(xk−1 | Y k−1) = Dn(x̂k−1,V k−1), where the
optimal (robust) estimate of xk−1 is x̂k−1 and the correspond-
ing estimation error covariance is V k−1. Note that the system
(1) is not guaranteed to be exact so that the true distribution
Qk−1(xk−1 | Y k−1) may not be Gaussian. This is because,
for example, if F k contains a random variable at one entry,
even though xk and wk are white (i.e., mutually independent)
Gaussian and Gk is deterministically constant, xk+1 will no
longer be Gaussian. However, for simplicity, we may limit our
estimation problem within the Gaussian filter framework [64]
(cf. the unscented [65]/cubature [66] Kalman filter for nonlinear
system filtering problem). That is, we use a Gaussian distribution
Nn(x̂k−1,V k−1) to approximate Dn(x̂k−1,V k−1) in the state
estimation procedure. By using the nominal system model (1),
we can obtain the nominal joint state-measurement distribution
conditioned on the previous measurements as

Pk(zk | Y k−1) =
∫

Rn

Pk(zk | xk−1) Qk−1(dxk−1 | Y k−1),

(16)
giving the time-update step in the estimation procedure as

Pk(zk | Y k−1) ∼ Nn+m (μk,Σk) , (17)

where

μk =

[
μx,k

μy,k

]
=

[
F k−1

HkF k−1

]
x̂k−1 (18)

and

Σk =

[
F k−1

HkF k−1

]
V k−1

[
F k−1

HkF k−1

]T
+⎡

⎣ Gk−1Q
1
2

k−1 0

HkGk−1Q
1
2

k−1 R
1
2

k

⎤
⎦[

Gk−1Q
1
2

k−1 0

HkGk−1Q
1
2

k−1 R
1
2

k

]T

.

(19)

Specifically, in (18), we let μx,k := F k−1x̂k−1 and μy,k :=
HkF k−1x̂k−1, respectively.

Remark 1: For concepts of time update and measurement
update, see, e.g., [3, Chapter 5.1] or [8, Theorem 4]. The
measurement-update step of the proposed filter in this paper
will be explained later in Corollary 1. The complete estimation
procedure will be given in Algorithm 1. �

Second, we define the ambiguity set Pzk |Y k−1 for the real
distribution Qk(zk | Y k−1). Suppose the true distribution

Qk(zk | Y k−1) ∼ Dn+m (ck,Sk) , (20)

where ck = [cTx,k, c
T
y,k]

T , cx,k = E(xk|Y k−1), and cy,k =
E(yk|Y k−1). If we adopt the moment-based ambiguity set
proposed in [58], we have the ambiguity set of Qk(zk | Y k−1)
as (21), where γ3 ≥ 0 and γ2 ≥ 1 ≥ γ1 ≥ 0. Eq (21) means
that ck lies in a ball centered at μk and the real covariance
Sk is linearly bounded by the nominal covariance. This am-
biguity set describes the trust level that we have towards the
nominal distribution (17) and is parameterized by ck and Sk.
The trust level is quantified by γ3, γ2, and γ1. The smaller
γ3 is and the closer γ2 and γ1 are to one, the more trust we
have towards the nominal distribution. Note that when γ3 = 0
and γ2 = γ1 = 1, the ambiguity set contains only the nominal

distribution Pk(zk|Y k−1) whose mean is μk and covariance
is Σk [cf. (17)]. In highlights, the set (21) defines a space for
distributional model uncertainties (cf. the norm-based model
uncertainties in [6]).

Third, we derive tractable reformulation(s) of (14). Recall
from (6) that under the linear estimation case (i.e., the Gaussian
approximation framework [64] is used regardless of whether Pk

and Qk are Gaussian), the second-moment-finite Borel measur-
able optimal estimator ψk(·) has an affine form, i.e.,

x̂k = ψk(yk) = Akyk + bk, (22)

where Ak ∈ Rn×m is a matrix (hence Borel measurable) and
bk ∈ Rn is a vector to be determined. Therefore, we have the
following theorem.

Theorem 1: With the optimal estimator (22), the distribution-
ally robust state estimation problem (14) admits von Neumann’s
min-max theorem (i.e., saddle point theorem), i.e.,

inf
Ak,bk

sup
ck,Sk

〈xk − (Akyk + bk),xk − (Akyk + bk)〉
=

sup
ck,Sk

inf
Ak,bk

〈xk − (Akyk + bk),xk − (Akyk + bk)〉.
(23)

In addition, ifΣk 
 0, this optimization problem is equivalent
to a nonlinear semidefinite program (NSDP)

sup
Sk

Sxx,k − Sxy,kS
−1
yy,kSyx,k, (24)

Subject to ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Sk � γ2Σk,
Sk � γ1Σk,

Sk =

[
Sxx,k Sxy,k

Syx,k Syy,k

]

 0,

Sxx,k 
 0,
Syy,k 
 0.

(25)

Proof: Since the optimal estimatorψk(·) is parameterized by
Ak and bk and the distributions Qk in (21) are parameterized by
ck andSk, (14) is equivalent to the left-hand side of the equality
in (23).

Let Sxx,k := 〈xk − cx,k,xk − cx,k〉, ST
yx,k = Sxy,k :=

〈xk − cx,k,yk − cy,k〉, Syy,k := 〈yk − cy,k,yk − cy,k〉, and

Sk :=

[
Sxx,k Sxy,k

Syx,k Syy,k

]
.

Since Σk 
 0, we have Sk 
 0. By Schur complement, we
further have Sxx,k 
 0 and Syy,k 
 0. This means that (25) is
equivalent to {

Sk � γ2Σk,
Sk � γ1Σk.

(26)

With the affine optimal estimator (22), straightforward alge-
braic manipulations on the objective function of (14), i.e.,

〈xk − (Akyk + bk),xk − (Akyk + bk)〉
gives the objective function in (27).
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inf
Ak,bk

sup
ck,Sk

〈I,Sxx,k+cx,kc
T
x,k〉+〈AT

kAk,Syy,k + cy,kc
T
y,k〉

− 〈Ak,Sxy,k + cx,kc
T
y,k〉

− 〈AT
k ,Syx,k+cy,kc

T
x,k〉+2〈bk,Akcy,k− cx,k〉

+ 〈bk, bk〉 (27)

For details of derivation, see Appendix D. Hence, problem (14)
can be reformulated as solving (27) subject to (21). Since (27) is
constraint-free, quadratic and convex in terms of bk, the optimal
solution of bk is obtained by the first-order optimality condition,
i.e.,

b�k = cx,k −Akcy,k. (28)

This equality simplifies (27) to

inf
Ak

sup
Sk

〈I,Sxx,k〉+ 〈AT
kAk,Syy,k〉

−〈Ak,Sxy,k〉 − 〈AT
k ,Syx,k〉,

(29)

during which the following fact is used: for any deterministic
matricesA,B, and C, we have

〈A,B +C〉 = 〈A,B〉+ 〈A,C〉.

The objective function (29) can be further written in a compact
form as

inf
Ak

sup
Sk

〈
[

I −Ak

−AT
k A

T
kAk

]
,Sk〉, (30)

which is subject to (21). To avoid notation clutter, we rewrite
(21) as ⎧⎨

⎩
(ck − μk)

T Σ−1k (ck − μk) ≤ γ3,

Sk + (ck − μk) (ck − μk)
T � γ2Σk,

Sk + (ck − μk) (ck − μk)
T � γ1Σk.

(31)

Since the ambiguity set (21) is convex and compact in terms
of (ck,Sk) and the objective function in (30)

〈
[

I −Ak

−AT
k A

T
kAk

]
,Sk〉

is linear (thus concave) in Sk and positive-definite quadratic
(thus convex) in Ak, von Neumann’s min-max theorem (i.e.,

saddle point theorem) holds, i.e.,

inf
Ak

sup
Sk

〈
[

I −Ak

−AT
k A

T
kAk

]
,Sk〉,

=

sup
Sk

inf
Ak

〈
[

I −Ak

−AT
k A

T
kAk

]
,Sk〉.

This gives the min-max equality (23). In view that the opti-
mization problem (30) overAk is constraint-free, differentiable,
and convex, the first-order optimality condition, i.e.,

AkSyy,k − Sxy,k = 0,

gives the optimal solution ofAk as

A�
k = Sxy,k · S−1yy,k. (32)

This equality simplifies (30) to (24). Note that the objective
function (24) is irrelevant to ck. Therefore, to maximize (24),
the larger the feasible set ofSk, the better. This gives the optimal
solution of ck as

c�k = μk. (33)

This equality simplifies (31) to (26), which is equivalent to
(25). This completes the proof.

Remark 2: Note that when there are no uncertainties in
(1), the ambiguity set contains only the nominal distribution
Pk(zk|Y k−1). Hence, ck and Sk would be fixed, and ck = μk

and Sk = Σk always hold. This observation reduces the distri-
butionally robust state estimator (14) to the canonical Kalman
filter (10). Moreover, the worst-case estimation error covariance
(24) becomes the nominal estimation error covariance (13).�

To further lower the number of parameters of the uncertainty
set, motivated by the reputed restricted isometry property [67],
we may consider an alternative as⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Sk � (1 + γ)Σk,
Sk � (1− γ)Σk,

Sk =

[
Sxx,k Sxy,k

Syx,k Syy,k

]

 0,

Sxx,k 
 0,
Syy,k 
 0,

(34)

in which 0 ≤ γ < 1. However, (34) is not equivalent to (25).
Corollary 1 (Measurement-update Step): Suppose that S�

k

solves the optimization problem (24) and (25). By recalling
(22), (28), (32), and (33), the distributionally robust estimator

Pzk |Y k−1 = Pzk|Y k−1 (ck,Sk) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Qk(zk | Y k−1)

∣∣∣∣∣∣∣∣∣∣

zk|Y k−1 ∼ Qk

Qk(zk | Y k−1) = Dn+m (ck,Sk)

[E(zk|Y k−1)− μk]
T Σ−1k [E(zk|Y k−1)− μk] ≤ γ3

E
[
(zk − μk)(zk − μk)

T |Y k−1
] � γ2Σk

E
[
(zk − μk)(zk − μk)

T |Y k−1
] � γ1Σk

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎧⎨
⎩Qk(zk | Y k−1)

∣∣∣∣∣∣
(ck − μk)

T Σ−1k (ck − μk) ≤ γ3
Sk + (ck − μk) (ck − μk)

T � γ2Σk

Sk + (ck − μk) (ck − μk)
T � γ1Σk

⎫⎬
⎭

(21)
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in the sense of linear minimum mean square estimation error is
given as

x̂k = ψ�
k(yk) = A

�
kyk + b�k

= μx,k + S�
xy,k · (S�

yy,k)
−1(yk − μy,k),

(35)

and according to Theorem 1, the worst-case estimation error
covariance is as

V k = S�
xx,k − S�

xy,k(S
�
yy,k)

−1S�
yx,k. (36)

Note that μx,k and μy,k in (35) are defined in (18). More-
over, the least-favorable (i.e., worst-case) conditional distribu-
tion of zk given Y k−1 is Q�

k(zk | Y k−1) = Dn+m(μk,S
�
k)

and the worst-case conditional distribution of xk given Y k

is Q�
k(xk | Y k) = Dn(x̂k,V k) [cf. Qk−1(xk−1 | Y k−1) =

Dn(x̂k−1,V k−1) in (16)]. In the Gaussian filter framework,
we have approximately Q�

k(zk | Y k−1) = Nn+m(μk,S
�
k) and

Q�
k(xk | Y k) = Nn(x̂k,V k). �

C. Other Types of Ambiguity Sets

This subsection discusses the scenarios when we do not
adopt the moment-based ambiguity set. We consider the
metrics/divergences of distributions, such as the Kullback–
Leibler divergence and the Wasserstein distance. Note that the
Kullback–Leibler divergence is not a statistical metric since
it does not meet the metric axioms. We do not explicitly dis-
cuss the τ -divergence [35] because the conclusions under the
Kullback–Leibler divergence remain the same as those under
the τ -divergence. When τ = 0, the τ -divergence degenerates to
the Kullback–Leibler divergence.

1) Kullback–Leibler Divergence: In this case, the ambiguity
set is as (3). See also [63]. When we consider the distributionally
robust estimation problem (14), (3) is specified into

Pzk|Y k−1 = {Qk(zk | Y k−1) |KL(Qk‖Pk) ≤ θ} . (37)

In general, if we use the τ -divergence, KL(Qk‖Pk) ≤ θ
should be replaced with Dτ (Qk‖Pk) ≤ θ, where Dτ (Qk‖Pk)
denotes the τ -divergence [35]. Supposing Qk(zk | Y k−1) is
also Gaussian, Eq. (37) can be explicitly expressed as

KL(Qk‖Pk)

=
1

2

[
‖ck − μk‖2Σ−1k

+Tr
[
Σ−1k Sk − I

]− ln det
(
Σ−1k Sk

)]
≤ θ.

(38)
The corresponding worst-case conditional distribution of zk

given Y k−1 is

Q�
k(zk | Y k−1) = Nn+m (μk,S

�
k) , (39)

where

S�
k =

[
Σ̃xx,k Σxy,k

Σyx,k Σyy,k

]
, (40)

and Σ̃xx,k is determined by the boundary condition
KL(Qk‖Pk) = θ [63]. In the τ -divergence case, the forms of
the corresponding Q�

k(zk | Y k−1) andS�
k are the same as those

in (39) and (40), respectively, but Σ̃xx,k is determined instead
from the boundary condition Dτ (Qk‖Pk) = θ [35].

Eq. (40) admits that the distributionally robust state esti-
mation under the Kullback–Leibler divergence (in general, the
τ -divergence) can be written as

x̂k = μx,k +Σxy,k · (Σyy,k)
−1(yk − μy,k), (41)

which is in the same form as the optimal estimation under
the nominal distribution, i.e., (11). This means that under the
Kullback–Leibler divergence or the τ -divergence, the worst-
case conditional distribution of zk given Y k−1 at the current
time step does not directly influence the optimal robust es-
timation at the same time step. It is worth mentioning that
the τ -divergence (including Kullback–Leibler) distributionally
robust estimator generalizes the risk-sensitive estimator (i.e.,
the exponential-cost estimator) in the sense of allowing the
time-varying sensitivity parameter [35], [63].

2) Wasserstein Distance: In this case, the ambiguity set is as
(4). See also [68]. When we consider the distributionally robust
estimation problem (14), Eq. (4) is specified into

Pzk |Y k−1 = {Qk(zk | Y k−1) |W(Qk,Pk) ≤ θ} . (42)

If we suppose Qk(zk | Y k−1) is also Gaussian, Eq. (42) can
be explicitly expressed as

W(Qk,Pk)

=

√
‖ck − μk‖2 +Tr

[
Sk +Σk − 2

(
Σ

1
2

kSkΣ
1
2

k

) 1
2

]
≤ θ.

(43)

The corresponding worst-case conditional distribution of zk
given Y k−1 is

Q�
k(zk | Y k−1) = Nn+m (μk,S

�
k) , (44)

where S�
k solves a NSDP subject to (43) [68].

Eq. (44) suggests that the distributionally robust state es-
timation under the Wasserstein ambiguity set is (35), which
is generally not guaranteed to have the same form as (41).
This means that, under the Wasserstein distance, the worst-case
conditional distribution of zk given Y k−1 at the current time
step directly influences the optimal robust estimation at the
same time step.

3) Comparisons With the Moment Ambiguity Set: Three
points must be highlighted. First, note that both the Kullback–
Leibler (in general, the τ -divergence) ambiguity set and the
Wasserstein ambiguity set require that the real conditional dis-
tribution of zk given Y k−1 is Gaussian. Otherwise, there is no
explicit equivalence between (37) and (38) and between (42)
and (43). This requirement is difficult to satisfy for a linear
system under unknown uncertainties. For example, if F k−1
contains a random variable at one entry, even though xk−1 and
wk−1 are white (i.e., mutually independent) Gaussian andGk−1
is deterministically constant, xk will no longer be Gaussian.
Second, although Gaussian, the Kullback–Leibler (in general,
the τ -divergence) ambiguity set and the Wasserstein ambiguity
set are highly nonlinear, whereas our moment ambiguity set is
linear. Note that an optimization problem over a linear feasible
set is generally easier to solve. Specifically, compared with the
extremely nonlinear semidefinite program under the Wasserstein
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ambiguity set [i.e., an NSDP s.t. (43)], the nonlinearity of our
NSDP under the moment ambiguity set [i.e., (24) s.t. (25)] is con-
siderably more moderate, and fortunately, our new NSDP can be
analytically (and therefore computationally efficiently) solved.
This feature saves a substantial amount of running time. Third,
under the Wasserstein ambiguity set, the worst-case conditional
distribution of zk given Y k−1 at the current time step (i.e., k)
directly influences the optimal estimation at the same time step,
while under the Kullback–Leibler (in general, the τ -divergence)
ambiguity set and the moment ambiguity set [see (48)], it does
not directly influence the optimal estimation at the same time
step. However, this does not mean that the Kullback–Leibler
(in general, the τ -divergence) distributionally robust estimator
and the moment distributionally robust estimator do nothing to
robustify the state estimation. Rather, the effect is indirect: they
influence the filter gains in the future instead of the gains at the
current time step. More specifically, note that each filter type has
a different associatedV k at the time stepk. Therefore, according
to (19), they have different Σk+1 values, which lead to different
state estimates at the time step k + 1.

IV. SOLVING THE MOMENT-BASED DISTRIBUTIONALLY

ROBUST ESTIMATION PROBLEM

In this section, we first discuss the solution to the nonlinear
semidefinite programming problem (24) subject to (25) and
then summarize the overall moment-based distributional robust
estimation scheme.

A. Solution to the Nonlinear Semidefinite Program

Theorem 2: The NSDP (24) subject to (25) is analytically
solved by S�

k = γ2Σk.
Proof: The NSDP (24) subject to (25) is equivalent to

sup
Sk

Tr
[
Sxx,k − Sxy,kS

−1
yy,kSyx,k

]
(45)

subject to (26). Let f(Sk) := Tr[Sxx,k − Sxy,kS
−1
yy,kSyx,k].

The gradient of f(Sk) with respect to Sk admits

∇Sk
f(Sk) =

[
I −Sxy,kS

−1
yy,k

−S−1yy,kSyx,k S
−1
yy,kSyx,kSxy,kS

−1
yy,k

]
.

(46)
Since the top left block of∇Sk

f(Sk) (i.e., I) is positive definite
and its Schur complement is

S−1yy,kSyx,kSxy,kS
−1
yy,k−S−1yy,kSyx,kI

−1Sxy,kS
−1
yy,k=0 � 0,

we have∇Sk
f(Sk) � 0, i.e., positive semidefinite. This means

that f(Sk) is a nondecreasing function with respect to Sk.
Therefore, if we assume that S�

k solves the NSDP (45) subject
to (26), we must have

S�
k = γ2Σk. (47)

This completes the proof.
Remark 3: In the proof of Theorem 2, the following facts are

involved.

1) For a block matrixM := [
A B
C D

], ifA is invertible, then

the Schur complement of blockA of matrixM is defined

Algorithm 1: Moment-Based Distributionally Robust Esti-
mator.

Definition: x̂k as the robust state estimate; V k as the state
estimation error covariance.

Initialize: x̂0, V 0, γ.
Remark: In (35), c�k has already been replaced with μk. In
general, γ1, γ2 can be independently initialized without γ.
By (47), the robust state estimation results only depend on
γ2. Therefore, we do not initialize γ1.

Input: measurement yk, k = 1, 2, 3, . . .
1: γ2 ← 1 + γ. // See (34)
2: while true do
3: // Time-Update Step, i.e., Prior Estimation
4: Use (18) and (19) to obtain μk and Σk;
5:
6: // Obtain the Worst-Case Scenario
7: Use (33) to obtain c�k;
8 Solve (24) and (25) with (47) to obtain S�

k;
9:

10: // Measurement-Update Step, i.e., Posterior
Estimation

11: Use (35) and (36) to obtain x̂k and V k;
12:
13: // Next Time Step
14: k ← k + 1;
15: end while
Output:x̂k

as M/A :=D −CA−1B. Further, if M is symmetric
(i.e.,C = BT ) andA 
 0, then the matrixM � 0 if and
only ifM/A � 0.

2) If S is a symmetric and invertible variable matrix and A
is constant with respect to S, then the following identities
hold:∇S Tr[S] = I;∇S Tr[AS] = ∇S Tr[SA] = AT ;
and ∇S Tr[ATS−1A] = ∇S Tr[S−1AAT ] =
−(S−1)T (AAT )T (S−1)T = −S−1AATS−1. �

Theorem 2 reveals that S�
xy,k · (S�

yy,k)
−1 equals Σxy,k ·

(Σyy,k)
−1 so that (35) admits

x̂k = μx,k +Σxy,k · (Σyy,k)
−1(yk − μy,k), (48)

which is the same as (41). This implies that under the moment
ambiguity set, the optimal robust state estimate is not directly
influenced by the worst-case distribution at the current step. In
addition, by comparing (47) with [21], we can conclude that
the traditional fading-memory Kalman-like filter is a distribu-
tionally robust state estimation solution under moment-based
ambiguity.

B. Moment-Based Distributionally Robust Estimator

The overall moment-based distributionally robust estimator
to the linear system (1) is summarized in Algorithm 1.
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C. Computational Complexity

From Remark 2, we know that S�
k ≡ Σk gives the canonical

Kalman filter. Since the moment-based distributionally robust
state estimator is solved byS�

k = γ2Σk, where γ2 is just a scalar
[cf. (47)], it has the same order of computational complexity as
the canonical Kalman filter. Specifically, at each time instant
k, the computational complexity is O(n3) because for a state
estimation problem, we usually have n ≥ m and n ≥ p. For
detailed analysis, see the online supplementary materials. This
means that the moment-based distributionally robust state esti-
mator is computationally as efficient as the canonical Kalman
filter.

V. COMPARISON WITH EXISTING ROBUST STATE ESTIMATION

FRAMEWORKS

Regarding modeling uncertainties in (1), the first-generation
methods actually do not address the problem from the per-
spective of robustness. Instead, they adaptively adjust the filter
parameters/structures so that the state estimation is consistent
with the measurements and the divergences of filters are avoided.
For example, the adaptive Kalman filter assumes that modeling
uncertainties perturb the process noise covarianceQk−1 and/or
the measurement noise covariance Rk (i.e., we do not exactly
know the true Qk−1 or Rk) and then estimates Qk−1 or Rk

when estimating the state. One issue with the adaptive Kalman
filter is that addressing the fast-changing statistics of noises is
hard (i.e., when the true Qk−1 or Rk changes quickly). Like-
wise, unknown-input filters try to improve the state estimation
performance, for example, by estimating the unknown input in
the sense of unbiased minimum variance (see [42], [44]), in the
sense of maximum likelihood (see [45]), or by leveraging an
auxiliary term (see [43]).

The successive four generations (except unknown-input filters
in the third generation) are essentially robust filters (i.e., robust
state estimators). The worst-case state estimation error covari-
ance matrix (i.e., the upper bound of the state estimation error
covariance matrix [11], [37]) is minimized to achieve robustness
so that the filter is insensitive to modeling uncertainties.

When modeling uncertainties exist, filter designers must ex-
plicitly describe their structures and parameters. For example,
in unknown-input filters [42], we study the linear system{

xk = F k−1xk−1 + Γk−1dk−1 +Gk−1wk−1,
yk =Hkxk + vk,

(49)

where dk−1 ∈ Rq is the unknown input used to describe the
modeling uncertainties. Note that the unknown-input dk may
also exist in the measurement dynamics [44]–[47]. Obviously,
in this case, the modeling uncertainties are limited to the range
space of Γk−1. To achieve good estimation performance, the
filter designer must carefully determine the structure and entries
of Γk−1. For another example, in [6], we are concerned with the
linear system{

xk = (F k−1 + δF k−1)xk−1 + (Gk−1 + δGk−1)wk−1,
yk =Hkxk + vk,

(50)

where δF k−1 and δGk−1 are used to model the perturbations
imposed on the nominal system matrices F k−1 and Gk−1,
respectively. In addition, δF k−1 and δGk−1 are assumed to
satisfy the following structure:[

δF k−1 δGk−1
]
=Mk−1Δk−1

[
Ef,k−1 Eg,k−1

]
, (51)

where Δk−1 is an arbitrary contraction operator (i.e., the op-
erator norm is less than one). Mk−1, Ef,k−1, and Eg,k−1 are
structure matrices that must be carefully designed. For the third
example, we refer to [9], in which the focused linear system is
the same as (50), but δF k−1 and δGk−1 are modeled as⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
δF k−1 =

l∑
i=1

F i,k−1 · ζi,k−1

δGk−1 =

l∑
i=1

Gi,k−1 · ζi,k−1,
(52)

where ζi,k−1 is a random variable with assumed-known statis-
tics; l,F i,k−1, andGi,k−1 are assumed to be exactly known. For
the fourth example, we shall recall the framework introduced in
this paper where the modeling uncertainties are described by a
family of distributions; see (2), (14), (21), and (25).

In summary, all the exemplified robust estimation frameworks
minimize the worst-case state estimation error covariance (viz.,
the upper bound of the state estimation error covariance), al-
though the uncertainties are described, structured, parameter-
ized, and bounded in different ways. However, the magic of
the proposed framework is that only a few scalars [e.g., two
scalars γ1 and γ2 in (25) or only one scale γ in (34)] rather than
subtly designed matrices [e.g., Γk−1 in (49); Mk−1, Ef,k−1,
andEg,k−1 in (51); andF i,k−1 andGi,k−1 in (52)] are required
to describe the modeling uncertainties. This means that when
ONLY the nominal model (1) is available and we do not know
how uncertainties exist, our framework takes the least risk of
failure. This is because if the structure matrices in (49), (51), and
(52) are inappropriately provided, the estimation performance
degrades significantly. However, to design proper structure ma-
trices, additional information on real system perturbations is
required. From the perspective of information, additional infor-
mation (e.g., structures and values) on modeling uncertainties
helps improve the estimation performance. As we can expect,
if we can exactly model the system in the form of (49), (51),
or (52), the specifically designed frameworks might outperform
our new distributional framework. The claims in this section will
be validated in the experiments.

VI. EXPERIMENTS

This section compares the state estimation performance of the
existing filters with our newly proposed filter. All the source data
and codes are available online at GitHub: https://github.com/
Spratm-Asleaf/DRSE. Interested readers can reproduce and/or
verify the claims of this paper by changing the parameters or
codes themselves. To ensure clarity regarding figures, we distin-
guish different results only by different colors. Readers who have
problems identifying colors could change the codes to generate

https://github.com/Spratm-Asleaf/DRSE
https://github.com/Spratm-Asleaf/DRSE
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different line types and markers to display the results. Additional
experiments can be found in the online supplementary materials.

We continue studying the classical instance discussed in [6],
[63], [68], i.e.,

F real
k =

[
0.9802 0.0196 + α ·Δk

0 0.9802

]
,

Gk =

[
1 0
0 1

]
,Hk =

[
1 −1 ] ,

Qk =

[
1.9608 0.0195
0.0195 1.9605

]
,Rk =

[
1
]
,

where the random scalar Δk ∈ U := [−1, 1] denotes the real
perturbations imposed on the system and U defines its support;
α is a multiplicative coefficient (in [6], α was fixed as 0.099). In
this state estimation problem, the nominal system matrix is

F k =

[
0.9802 0.0196

0 0.9802

]
.

A. Candidate Filters

According to Section I-B and Section V, we are motivated to
implement the following filters for comparison.

1) TMKF: the canonical Kalman filter with the true model.
Note that in the simulation, we know the underlying true
model over time (viz., F real

k ). Therefore, this method
theoretically gives the best estimate of state in the sense
of linear unbiased minimum estimation error covariance.

2) KF: the Kalman filter (with the nominal model F k).
3) Adaptive: the adaptive Kalman-like filter [25] (cf. [24]).
4) Fading: the adaptive fading-memory Kalman-like fil-

ter [22].
5) H∞ : the H∞ filter [28].
6) UB: the upper-bound Kalman-like filter [11].
7) UI: the unknown-input Kalman-like filter [42].
8) SPU: the filter for stochastic parametric uncertainties [9].
9) SNKF: Sayed’s norm-constrained Kalman-like filter [6].

10) τ -KF: the τ -divergence Kalman-like filter [35].
11) WKF: the Wasserstein Kalman-like filter [68].
12) MKF: the moment-based distributionally robust state

estimator introduced in this paper.
The twelve methods above are representatives of the five filter

generations beginning with the canonical Kalman filter in the
1960 s and ending with the filter proposed in this paper. We do not
consider the set-valued Kalman-like filter [33], the guaranteed-
cost Kalman-like filter [37], and the traditional risk-sensitive
Kalman-like filter [34] because in [6], they have been substan-
tially studied and compared. Note that the τ -divergence Kalman-
like filter [35] generalizes the Kullback–Leibler Kalman-like
filter [63] (when τ = 0, the τ -divergence gives the Kullback–
Leibler divergence). Note also that the traditional risk-sensitive
Kalman-like filter is a special case of the τ -divergence Kalman-
like filter [35], [63].

B. Results With Exactly Known Structures of Uncertainties

In this illustration, we first assume that the structural infor-
mation of the modeling uncertainties is known. Namely, all the
filtering frameworks know that the uncertainties impact the first
entry of the state vector.

In all methods, the initial state estimate is set as x̂0 = [0, 0]T

and its corresponding state estimation error covariance V 0 is
set as diag{1, 1}, where diag{·} denotes a diagonal matrix [6],
[63], [68]. All the parameters of each filter are tuned to perform
(nearly) optimally for the studied instance (when Δk randomly
changes and α = 1). The details of the parameter settings are
available in the disclosed codes at GitHub.

In the H∞ filter, we select γ (see [28]) such that the exis-
tence condition of the H∞ filter is guaranteed. From simulation
validation, we select γ = 102.

In Sayed’s norm-constrained Kalman-like filter [6], we set
Mk−1 = [0.0198, 0]T ,Ef,k−1 = [0, α/0.0198], andEg,k−1 =
[0, 0]T in (51), such that

Mk−1Ef,k−1 =

[
0 α
0 0

]
.

Namely, we assume that we know exactly the structural infor-
mation of the modeling uncertainties.

In the unknown-input Kalman-like filter [42], we set Γk =
[1, 0]T in (49) because, as supposed before, we know that the
modeling uncertainties influence the first entry of the state
vector, and we need to guarantee Assumption 1 of [42].

In the filter for stochastic parametric uncertainties [9], we
have l = 1 in (52),

F 1,k−1 =

[
0
√
3α

0 0

]
,

and G1,k−1 = 0. Note that ζi,k−1 is assumed to have unit
variance in [9]. However, in the studied instance, the vari-
ance of Δk is [1− (−1)]2/12 = 1/3 if uniformly distributed.
Thus, the right-top entry of F 1,k−1 is

√
3α rather than α.

The initial polytope is constructed as a hypercube centered at
diag{1, 1} with an edge length of 1. Namely, the vertexes of
this polytope arediag{0.5, 0.5},diag{0.5, 1.5},diag{1.5, 0.5},
and diag{1.5, 1.5} (i.e., p = 4). In other words, we construct
the initial polytope for the autocorrelation matrix (of the state
vector) around the initial state estimation error covariance (recall
that the initial state estimation error covariance has been set as
diag{1, 1}).

In the τ -divergence Kalman-like filter [35], we let τ = 0
(therefore, the τ -divergence Kalman-like filter specifies the
Kullback–Leibler Kalman-like filter [63]) and the radius of the
ambiguity set be 1.5× 10−4.

In the Wasserstein Kalman-like filter [68], the radius of the
ambiguity set is set to 0.1.

In our moment-based distributionally robust filter, γ = 0.02,
and therefore, γ2 = 1.02 (see Algorithm 1).

Suppose each simulation episode runs T = 1000 discrete-
time steps. The estimation error at each time step k
(shown in figures) is measured in decibels (dB) by
10 log10[(x1,k − x̂1,k)

2 + (x2,k − x̂2,k)
2], where x1,k (resp.
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Fig. 1. The results with prior known structural information (for H∞, the prior parametric information is known, i.e., γ = 102). In (a), SPU and UI coincide.

x2,k) is the first (resp. second) component of the state vector xk

and x̂1,k (resp. x̂2,k) denotes its estimate. The overall estimation
error of each episode (shown in tables) is measured by the root
mean square error (RMSE) as

√√√√ 1

T

T∑
k=1

[(x1,k − x̂1,k)2 + (x2,k − x̂2,k)2].

In principle, we should repeat the experiment independently
several times and compare the average estimation performance,
just as [6] and [68] did where 500 independent episodes were
run. However, from the simulations, it is evident that the relative
estimation performance of each filter compared to other filters
is the same for every independent episode. Therefore, without
loss of generality, we display only the estimation results of each
filter for a single episode. Interested readers could validate this
claim with the disclosed codes themselves. We conduct each
of the following four experiments once (rather than many as
explained).
� First, we fix Δk = 1 for all k and let α = 5; i.e., the

modeling uncertainty is constant but unknown over time.
The results are shown in Fig. 1(a) and Table I .

� Second, let Δk randomly take its value with the uniform
distribution from its supportU at each step k and letα = 1;
i.e., the modeling uncertainty is a stochastic process over
time, but with relatively small magnitude. The results are
shown in Fig. 1(b) and Table II.

TABLE I
THE RESULTS WHEN Δk = 1 FIXED AND α = 5

Note: The results are obtained by a laptop with 8 G RAM and an Intel(R)
Core(TM) i7-8850H CPU @ 2.60 GHz. Avg Time: Average Execution Time at each time
step (unit: seconds); 1e-5: 1× 10−5.

TABLE II
THE RESULTS WHEN Δk RANDOMLY CHANGES AND α = 1

See Table I for table notes.

� Third, let Δk randomly take its value with the uniform
distribution from its supportU at each step k and letα = 5;
i.e., the modeling uncertainty is a stochastic process over
time, but with relatively large magnitude. The results are
shown in Fig. 1(c) and Table III.
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TABLE III
THE RESULTS WHEN Δk RANDOMLY CHANGES AND α = 5

See Table I for table notes.

TABLE IV
THE RESULTS WHEN α = 0

See Table I for table notes.

TABLE V
THE RESULTS WITHOUT PRIOR STRUCTURAL/PARAMETRIC INFORMATION

See Table I for table notes.

� Fourth, we let α = 0; i.e., there are no modeling uncer-
tainties. The results are shown in Fig. 1(d) and Table IV
.

Note that the UB filter [11], which is in essence a kind of
fading-memory Kalman-like filter (cf. [21]) is inappropriate for
the instance discussed in this paper because Assumption (19)
of [11] requires that rank (Hk) = n. However, the instance
that we are working on admits that rank (Hk) = 1 �= n = 2.
Therefore, the UB filter produces extremely unsatisfactory ex-
perimental results.

From Fig. 1 and Tables I–IV, the conclusions below can be
outlined.

1) The TMKF always gives the best performance because it
works with the true system model.

2) The UB filter does not work well for the instance that we
are studying.

3) The traditional adaptive Kalman-like filter and the adap-
tive fading-memory Kalman-like filter perform worse than
the canonical Kalman filter on the studied instance.

4) The H∞ filter can be a choice because it at least outper-
forms the KF when modeling uncertainties exist.

5) The MKF is essentially the traditional fading-memory
Kalman-like filter with a fixed fading factor γ2. How-
ever, it outperforms the adaptive-factor fading-memory
Kalman-like filters in [22] and [11]. This phenomenon
is interesting and exists for the conventional risk-sensitive

Kalman-like filter (which has a fixed risk-sensitive param-
eter) and the Kullback–Leibler divergence-based Kalman-
like filter (which has an adaptive risk-sensitive parameter)
[63, Fig. 5]. Therefore, it is not always beneficial to
adaptively adjust the risk-sensitive parameter of a risk-
sensitive Kalman-like filter and the fading factor of a
fading-memory Kalman-like filter.

6) When we know the structural information of the modeling
uncertainties, the UI filter and SPU filter are two powerful
solutions. However, the computational efficiency of the
SPU filter is extremely low since at each time step, the SPU
filter needs to numerically solve a semidefinite program
(it is well known that solving a semidefinite program is
generally challenging).

7) The SNKF is another good choice when we know the
structural information of the modeling uncertainties.

8) Although the structural information of the modeling un-
certainties is not used, the distributionally robust state
estimators are still promising. In addition, compared with
the τ -KF and WKF, the newly proposed MKF is attractive
due to its high computational efficiency and estimation
performance.

9) When there are no modeling uncertainties, i.e., when the
nominal model is the true model, the KF works best com-
pared with any robust filtering frameworks (see Table IV).
This is because the KF is theoretically optimal for an
exact system model. Therefore, the cost of robustness
under uncertain conditions is to sacrifice optimality under
perfect conditions. More specifically, robust filters are
robust under uncertain conditions, but they are not optimal
under perfect conditions; the canonical Kalman filter is
optimal under perfect conditions, but it is not robust under
uncertain conditions.

C. Results Without Exactly Known Structures of Uncertainties

For experiments in this subsection, we no longer assume
that the structural information of the modeling uncertainties is
known. In other words, we know neither the perturbation struc-

ture existing as [
0 α
0 0

], nor the exact value of α. Thus, we may

give improper structure matrices for different filtering frame-
works. For example, we may instead (mistakenly) setEf,k−1 =

[5, 0] in (51), Γk = [0, 1]T in (49), and F 1,k−1 = [
0 0
3 0

] in (52).

To clarify further, all the frameworks no longer know that the
uncertainties impact the first entry of the state vector. Instead,
they might assume that uncertainties impact the second entry of
the state vector. In addition, for the H∞ filter, we do not select a
large enoughγ (see [28]) in advance to guarantee the existence of
the H∞ filter. Alternatively, we arbitrarily select γ = 25 (rather
than minimally required 102). As we can expect, this incorrect
structural/parametric information will mislead the filters and
degrade the estimation performance. In this experiment, we set
α = 5 and letΔk take random uniformly distributed values from
its support. The results are given in Fig. 2 and Table V.
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Fig. 2. The results without prior structural/parametric information. In this
case, only the distributionally robust estimators can outperform the true-model
Kalman filter. Structural/parametric-information-aware filters such as UI, SNKF,
and H∞ perform poorly. Moreover, SPU even fails to work (and therefore is not
plotted).

From the results, we can observe the potential of the newly
proposed distributionally robust estimation framework. Namely,
even if we do not know the correct structural information of the
modeling uncertainties, we do not have a risk of encountering
a disaster. However, compared with Fig. 1, we can see that
the cost of this powerful robustness is that the distributionally
robust estimation framework never accounts for the (partially)
known information of the modeling uncertainties. Therefore,
when given some exact structural information of the modeling
uncertainties, the distributionally robust estimation framework
would perform worse than the specifically designed structure-
information-aware filtering frameworks. The discrepancy be-
tween absolute robustness and optimality, however, is unavoid-
able from the perspective of information.

D. Suggestions on Tuning the Size of the Ambiguity Set

The size of the ambiguity set (21) is controlled by three
scalars, namely, γ1, γ2, and γ3. To include the nominal values
of the mean (i.e., μk) and covariance (i.e., Σk) in the ambiguity
set (21), we must have γ3 ≥ 0 and γ2 ≥ 1 ≥ γ1 ≥ 0. Note that
when γ3 = 0 and γ2 = γ1 = 1, the ambiguity set (21) contains
only the nominal distribution whose mean is μk and covariance
is Σk. However, the moment-based distributionally robust state
estimator requires γ3 ≡ 0 [see (33)], is irrelevant toγ1 [see (47)],
and only depends on γ2. Therefore, γ1 can be any value in [0,1],
and we only investigate how to tune γ2. The caption of Fig. 3
lists the RMSEs of the candidate filters.

From Fig. 3, it is evident that γ2 can be neither too large nor
too small to obtain satisfactory estimation performance. The
robust state estimator with a too small γ2 value has insufficient
robustness (i.e., insufficient ability against uncertainties), while
that with a too large γ2 value is too conservative to produce
satisfactory estimation performance. Unfortunately, the optimal
tuning method for γ2 is unknown (unless γ2 can be directly
given in the model identification stage that defines F k,Gk, and
Hk). At present, the authors can only suggest that readers try
appropriate values for their specific problems. Nevertheless, we
believe that tuning a scalar γ2 is significantly easier than tuning

structural matrices Γk−1 in (49),Mk−1,Ef,k−1 andEg,k−1 in
(51), and F i,k−1 andGi,k−1 in (52).

A possible tuning method of γ2 for a real system involves
leveraging a controller. This approach is reasonable because a
natural purpose for state estimation is to design a state-feedback
controller. In this case, the controller is parameterized by γ2.
Hence, we can choose the value with which the controller works
best, e.g., for high-accuracy output tracking (i.e., the real output
is close enough to the expected output). However, controller de-
sign is not the unique reason for state estimation. Sometimes, we
are only concerned with monitoring the state of a system without
adjusting its quantities (i.e., state and output). In this case, the
rule of thumb is to choose the value that makes the estimated state
[or some transform(s) of it] be consistent, as much as possible,
with subjective (e.g., qualitative) or objective (e.g., quantitative)
evidence collected somehow from somewhere else.

VII. CONCLUSIONS

In this paper, the distributionally robust state estimation
method for linear Markov systems is proposed. We integrate
the existing Kullback–Leibler-divergence robust state estima-
tion method [63], the τ -divergence robust state estimation
method [35], the Wasserstein-distance robust state estimation
method [68], and the newly proposed moment-based robust state
estimation method into a unified framework. The characteristics
are outlined below.

1) The proposed framework uses only a few scalars (i.e., the
radius/scale of the ambiguity set) rather than structured
matrices with many entries to describe the modeling un-
certainties. Therefore, it does not require a priori structural
information of modeling uncertainties.

2) Our framework uses a family of distributions to describe
the modeling uncertainties, after which the state esti-
mation is performed over the worst-case distribution. In
essence, borrowing phrasings from existing frameworks,
the upper bound of the estimation error covariance is
minimized.

3) The family of distributions [i.e., the ambiguity set, see
(2)] can be described by several means, such as the
τ -divergence, the Kullback–Leibler divergence (37), the
Wasserstein distance (42), and the proposed moment-
based ambiguity set (21). The detailed comparisons
among those different ambiguity sets can be revisited in
Section III-C. The newly proposed moment-based filter in
this paper is most attractive due to it having the highest
computational efficiency, which can be attributed to the
analytical tractability of the linearly constrained NSDP
(recall Section IV-A). In addition, the state estimation
performance of the moment-based filter is better than that
of the τ -divergence filter (when τ = 0, i.e., the Kullback–
Leibler divergence) and the Wasserstein-distance filter for
the studied instance.

4) The distributionally robust estimation framework outper-
forms other existing structural-information-aware frame-
works when we do not have a priori structural infor-
mation of modeling uncertainties. However, when we
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Fig. 3. The results with different γ2 values. In (a), RMSE: TMKF = 2.44, KF = 48.75, MKF (1.005) = 39.97, MKF (1.02) = 12.52, MKF (1.05) = 106.43.

know some structural information of modeling uncertain-
ties, the newly proposed distributionally robust estimation
framework performs worse than the existing specifically
designed structural-information-aware frameworks.

5) The risk-sensitive Kalman-like filter and the fading-
memory Kalman-like filter are distributionally robust state
estimation solutions under Kullback–Leibler divergence
(in general, τ -divergence) ambiguity and moment-based
ambiguity, respectively. However, it is not always benefi-
cial to adaptively adjust the risk-sensitive parameter of a
risk-sensitive Kalman-like filter and the fading factor of a
fading-memory Kalman-like filter.

From Fig. 3, we can see that the proposed algorithm is not
robust with respect to the size of the ambiguity set (i.e., γ2).
Unfortunately, the optimal or convincing tuning method for the
size of ambiguity sets (e.g., γ2 in this paper; ρ in [68]; and
c in [35], [63]) has yet to be found. We invite scholars in this
field to collaborate with the authors on addressing the two issues
below in the future.

1) How can γ2 be tuned in a real system where the true state
is unknown?

2) How can we ensure that the state estimator remains tuned
over varying conditions? In other words, how do we select
a time-varying γ2,k where k denotes the discrete time?

Although imperfect, the proposed method is still promising
because tuning a scalar γ2 is easier than tuning structural ma-
trices Γk−1 in (49), Mk−1, Ef,k−1, and Eg,k−1 in (51), and
F i,k−1 andGi,k−1 in (52).

APPENDIX A
INTUITIVE EXPLANATIONS FOR NOTATIONS

The notation in this paper is consistent with that in [8]
and/or [62]. In this appendix, we provide intuitive explanations
for some notations for better readability. If a random vector
x ∈ L2

c(dP ), we have Tr[
∫
xxT dP ] =

∫
xTxdP <∞; i.e., x

has a finite second moment. If x and y are random vectors in
the stochastic Hilbert spaceL2

c(dP ), the inner product 〈x,y〉 :=
ExyT denotes their cross-correlation matrix. Therefore, 〈x,x〉
denotes the second-order moment matrix (i.e., autocorrelation
matrix) of the random vector x. When x is centered (viz.,
zero-mean), 〈x,x〉 = ExxT denotes the covariance matrix.

APPENDIX B
ON MATRIX-TYPE OBJECTIVE

In the state estimation literature, some people directly work on
minimizing a covariance matrix (see, e.g., [8] and [2, Chapter
3], while others work on minimizing its trace (see, e.g., [1],
[3]). They give the same solution because the trace operator is
monotonically increasing. Since this paper follows the notation
convention of [8], we study a matrix-type objective.

APPENDIX C
DERIVE (15)

By (1), we have{
xk = F k−1xk−1 +Gk−1wk−1,
yk =HkF k−1xk−1 +HkGk−1wk−1 + vk,

namely,

zk =

[
xk

yk

]
=

[
F k−1

HkF k−1

]
xk−1 +

[
Gk−1 0

HkGk−1 1

] [
wk−1
vk

]
.

Since wk−1 and vk are mutually independent and Gaussian,
the augmented vector [wT

k−1,v
T
k ]

T is jointly Gaussian with a
mean vector of [0T ,0T ]T and covariance of

E

[
wk−1
vk

] [
wk−1
vk

]T
=

[
Qk−1 0
0 Rk

]
.

Therefore, given xk−1, zk is jointly Gaussian with mean of[
F k−1

HkF k−1

]
xk−1 +

[
Gk−1 0

HkGk−1 1

] [
0
0

]
,

and covariance of

M

[
Qk−1 0
0 Rk

]
MT

= M

[
Q

1
2

k−1 0

0 R
1
2

k

][
Q

1
2

k−1 0

0 R
1
2

k

]T

MT

= M

[
Q

1
2

k−1 0

0 R
1
2

k

](
M

[
Q

1
2

k−1 0

0 R
1
2

k

])T
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where

M :=

[
Gk−1 0

HkGk−1 1

]
.

In summary,

Pk(zk | xk−1) = Nn+m

([
F k−1

HkF k−1

]
xk−1,Σ◦k

)
where

Σ◦k =⎡
⎣ Gk−1Q

1
2

k−1 0

HkGk−1Q
1
2

k−1 R
1
2

k

⎤
⎦
⎡
⎣ Gk−1Q

1
2

k−1 0

HkGk−1Q
1
2

k−1 R
1
2

k

⎤
⎦T

,

which is (15).

APPENDIX D
DERIVE (27)

By definition, Sxx,k := 〈xk − cx,k,xk − cx,k〉 = E(xk −
cx,k)(xk − cx,k)T = E(xk)(xk)

T − E(xk)(cx,k)
T −

cx,kE(xk)
T + (cx,k)(cx,k)

T = E(xk)(xk)
T −

(cx,k)(cx,k)
T = 〈xk,xk〉 − cx,kcTx,k. Hence, 〈xk,xk〉 =

Sxx,k + cx,kc
T
x,k. Similarly, we have 〈xk,yk〉 =

Sxy,k + cx,kc
T
y,k, 〈yk,xk〉 = Syx,k + cy,kc

T
x,k, and

〈yk,yk〉 = Syy,k + cy,kc
T
y,k. As a result, we have (53).

Applying the trace operator on both sides of (53)
gives (27). Note that Tr[Ak(Syy,k + cy,kc

T
y,k)A

T
k ] =

Tr[AT
kAk(Syy,k + cy,kc

T
y,k)].

〈xk − (Akyk + bk),xk − (Akyk + bk)〉
= 〈xk,xk〉 − 〈Akyk + bk,xk〉 − 〈xk,Akyk + bk〉

+〈Akyk + bk,Akyk + bk〉
= 〈xk,xk〉 −Ak〈yk,xk〉 − 〈bk,xk〉 − 〈xk,yk〉AT

k

−〈xk, bk〉+Ak〈yk,yk〉AT
k +Ak〈yk, bk〉

+〈bk,yk〉AT
k + 〈bk, bk〉

= 〈xk,xk〉+Ak〈yk,yk〉AT
k − 〈xk,yk〉AT

k −Ak〈yk,xk〉
−〈bk,xk〉 − 〈xk, bk〉+Ak〈yk, bk〉
+〈bk,yk〉AT

k + 〈bk, bk〉
= 〈xk,xk〉+Ak〈yk,yk〉AT

k − 〈xk,yk〉AT
k −Ak〈yk,xk〉

+〈bk,Akyk − xk〉+ 〈Akyk − xk, bk〉+ 〈bk, bk〉
= (Sxx,k + cx,kc

T
x,k) +Ak(Syy,k + cy,kc

T
y,k)A

T
k

−(Sxy,k + cx,kc
T
y,k)A

T
k −Ak(Syx,k + cy,kc

T
x,k)

+2(Akcy,k − cx,k)bTk + 〈bk, bk〉.
(53)
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