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Supplementary Materials

I. COMPUTATIONAL COMPLEXITY ANALYSIS

First, note that the computational complexity of the matrix
multiplication for two matrices Mn×m and Mm×p is O(nmp)
using the definition of matrix multiplication, and of the matrix
inverse for a matrix Mm×m is O(m3) using the Gauss–Jordan
elimination method. (The results can be improved by advanced
algorithms, e.g., the Strassen algorithm.) Therefore,

1) in the time-update step, the computational complexity of
(18) is O[(n+m)×n+(n+m)], of (19) is O[(n+m)×
n× n+ (n+m)× n× (n+m) + (n+m)× (p+m)×
(n+m) + 2× (n+m)× (n+m)];

2) in the step of obtaining the worst-case scenario, the
computational complexity of (33) is O[n+m], of (47) is
O[2× (n+m)× (n+m)];

3) in the measurement-update step, the computational com-
plexity of (35) is O[n+m3 + nmm+ nm+ n], of (36)
is O[n2 +m3 + nmm+ nmn+ n2].

Let d := max{n,m, p}. As a result, the computational
complexity of Algorithm 1 is asymptotically O(d3). Since for
a usual state estimation problem, n ≥ p and n ≥ m, the
computational complexity of Algorithm 1 is O(n3).

II. SUPPLEMENTARY EXPERIMENTS

In Introduction I, we claim that the proposed method would
be robust against uncertainties due to violation(s) of the
following three types of assumptions.
4) µw

k , µv
k are exactly known and typically µw

k ≡ 0, µv
k ≡ 0;

5) Qk and Rk are exactly known;
6) Fk−1, Gk−1, and Hk are exactly known.

In the experiment section (Section VI), we have studied
the robustness of the proposed method against uncertainties
in the system matrix Fk [i.e., the type 6)]. In this appendix,
we investigate the robustness of the proposed method against
uncertainties in the statistical properties, i.e., mean and covari-
ance, of the noises, respectively. Comparisons are made with
the non-robust canonical Kalman filter.

First, we suppose the mean vector µw
k−1 of the process noise

wk−1 is not exactly zero-valued [i.e., the type 4)]. In this case,
the underlying true system is{

xk = Fk−1xk−1 + Γk−1dk−1 +Gk−1wk−1,
yk = Hkxk + vk,

while the nominal system is{
xk = Fk−1xk−1 +Gk−1wk−1,
yk = Hkxk + vk,

where we use Γk−1dk−1 := Gk−1µ
w
k−1 to model the

uncertain mean of wk−1 (strictly, the uncertain mean of
Gk−1wk−1). Without loss of generality, we still use the
nominal values of Fk−1, Gk−1, Hk, Qk−1, and Rk in Section
VI. Besides, we assume Γk−1 := [1, 0]T and dk−1 is a random
variable which follows a standard Gaussian distribution. We
have results in Fig. 1 (see also its caption for RMSEs),
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Fig. 1. Results with γ2 = 1.005, γ2 = 1.02, and γ2 = 1.05, respectively.
RMSE: TMKF = 9.43, KF = 21.96, MKF (1.005) = 19.34, MKF (1.02) =
13.25, MKF (1.05) = 18.28.

through which the robustness of the proposed method against
uncertainties in the mean of the noises is validated.

Second, we suppose the covariance matrices Qk−1 of the
process noise wk−1 and Rk of the measurement noise vk

are not exactly known [i.e., the type 5)]. In this case, the
underlying true system and the nominal system are{

xk = Fk−1xk−1 +Gk−1wk−1,
yk = Hkxk + vk,

but they have different Qk−1 and Rk. We investigate a target
tracking problem discussed in [1]. Therefore, the nominal
values of Fk−1, Gk−1, Hk, Qk−1, and Rk are:

Fk−1 :=

[
1 ∆t
0 1

]
, Gk−1 :=

[
(∆t)2/2

∆t

]
,

Hk :=
[
1 0

]
, Qk−1 := 0.1, Rk := 202,

where ∆t := 1 (second) is the sampling time. The true values
of Qk−1 and Rk are

Qk−1 := 0.1 + 0.1× qk−1, Rk := 202 + 10× rk,

where qk−1 and rk are two random variables following stan-
dard uniform distributions in [0, 1]. We have results in Fig. 2
(see also its caption for RMSEs), through which the robustness
of the proposed method against uncertainties in the covariances
of the noises is validated.
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Fig. 2. Results with γ2 = 1.005, γ2 = 1.02, and γ2 = 1.05, respectively.
RMSE: TMKF = 10.16, KF = 12.65, MKF (1.005) = 12.43, MKF (1.02) =
11.88, MKF (1.05) = 489.86.
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