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Denoising, Outlier/Dropout Correction, and Sensor
Selection in Range-Based Positioning
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Abstract— Range-based target localization combines the range
measurements and appropriate algorithms [such as time of
arrival (TOA)] to determine the real-time position of a moving
target not only in a satellite-denied environment but also for
high-precision applications in an open (i.e., satellite-available)
environment. However, the measurements from sensors always
suffer from uncertainties, such as noises, outliers, dropouts, and
biases, which make measurements not reliable enough to directly
utilize in positioning. This article is, therefore, concerned with
two kinds of sensor correction problems: 1) attenuating the
noises, removing the outliers, and completing the dropouts and
2) identifying the discredited sensors and forbidding them from
use. Specifically, we model a range measurement time series from
a ranging sensor as a nonstationary stochastic process and then
use a local polynomial to regress the mean function in an online
manner. The derivatives of the mean function are identified as the
state variables in the state space, and the Kalman filter is used to
estimate the states. We will show that: 1) the proposed method is
simple yet effective in denoising the measurements and correcting
the outliers/dropouts with very high accuracy and precision and
2) the defined and estimated states can clearly reflect the pattern
of one type of nonspecific anomaly contained in the range time
series, which enables the recognition of the dysfunctional sensors.

Index Terms— Fault diagnosis, filtering, sensor correction, tar-
get localization, time of arrival (TOA), time series, ultrawideband
(UWB).

I. INTRODUCTION

A. Subject Matter

THE reliability of sensors significantly influences the per-
formances of the related upper level applications since

not all the measurements from sensors are exact enough
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for direct use. Taking the ultrawideband (UWB) ranging
for range-based positioning [1], [2] as an example, there
are several types of uncertainties contained in the origi-
nal range time series, which are indispensable to eliminate
and/or calibrate, mainly including: 1) random (e.g., thermal)
noises [3]–[5] that are generally white Gaussian with known or
partially known statistics; 2) line-of-sight (LOS) and non-LOS
(NLOS) ranging errors [3], [5]–[9] that act as unknown but
numerically positive sensor biases/outliers; 3) channel errors
other than NLOS [10]; 4) outliers in LOS environments due,
e.g., to processing delay in signal processor (SPor) or to
queuing delay of SPor interrupters; 5) dropouts that may be
sparse or sometimes successively occur due, e.g., to occlusion;
and 6) nonspecific errors existing as unknown biases. While
uncertainty types 1)–3) are widely reported and studied in the
past, types 4)–6) are new UWB sensor phenomena that the
authors of this article observed in some uncertain positioning
conditions. This article, therefore, mainly considers three
kinds of issues in obtaining the reliable range measurements
for range-based positioning under uncertainty types 1) and
4)–6). We also discuss the random (e.g., thermal, finite band-
width, and nonideal equipment [3]) noise attenuating problem
because, up to date, there is still few efficient online methods to
denoise a noised model-free signal (i.e., a noised time series).
Specifically, we are addressing the following three issues.

1) Filtering the random noise for a range time series.
2) Examining the range time series measurements and

correcting the dropouts/outliers therein.
3) Excluding unreliable sensor(s) from the sensor bank.

We separately consider this issue because, sometimes,
some uncertainties in measurements are hard [or even
impossible (see Fig. 2)] to correct.

Remark 1: Different from traditional NLOS/LOS errors
in UWB ranging that introduces not only a nonzero mean
(i.e., bias) but also a heavy tail (i.e., outliers) in the rang-
ing error distribution, the outliers/dropouts studied in this
article introduce no biases to the error distribution. When
outliers/dropouts are excluded, the error distribution becomes
roughly zero-mean Gaussian. That is, we are not han-
dling the traditional NLOS/LOS error elimination problem.
Instead, we assume that the traditional NLOS biases/outliers
have already been mitigated by representative solutions,
e.g., [3], [6], [7], [9], and [11], and the LOS biases have
been addressed by the simple yet practical linear regression
method [5], [9], i.e., r̂ = a · r + b where r is the mea-
sured range, a and b are regression coefficients, and r̂ is
the calibrated range. Since the distributions of the dropouts
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and the SPor-related outliers are unknown, multiple-modal
(see Fig. 14), and time-variant so that the statistics-based
solution, e.g., [6], is not applicable, and the dropouts and the
SPor-related outliers do not change the typical NLOS/LOS
channel impulse responses (namely, power delay profiles) so
that the pattern recognition methods, e.g., [7] and [9], are not
applicable, the newly raised three issues in this article cannot
be handled by the traditional NLOS/LOS error elimination
methods. Thus, this article provides a complementary solution
that executes after the traditional NLOS/LOS error elimination
process. �

B. Literature Review

As an example, the ranging sensors that this article adopts
are, but, in general, not limited to, UWB sensors. First,
we review the drawbacks of the existing filtering tech-
niques (for random noises) and provide a new idea to do
signal filtering. Second, we investigate the existing out-
lier/dropout correction methods and state the necessity of our
research. Third, we overview the existing sensor selection
strategies and formulate one new type of sensor selection
problem.

1) High-Accuracy Denoising: Measurements from sensors
always suffer from noises. Typically, such noises are station-
ary, white, and Gaussian. We aim to denoise the measurements
to provide more precise information. As an example, in [4],
the moving average method is used in denoising the UWB
ranging measurements. There are two categories of meth-
ods applied for denoising in the literature. The first one is
model-based [12] where the signal model and sensor model
(i.e., the dynamics of the information system that generates
this signal and the dynamics of the sensor that captures
the signal) are required. However, although the model-based
methods are accurate and precise, for a general sensor, such
methodology is limited to use because we cannot (sometimes,
have no need to) obtain the signal model. The second category
is model-free and identified as classical signal processing [13]
or time series analysis [14], which is widely used in gen-
eral measurement denoising. However, this kind of method
is innately limited for high-accuracy denoising since such
methods are likely to introduce the (severe) phase delay
(i.e., time delay) issue because the phase response of a finite
impulse response (FIR) or infinite impulse response (IIR)
filter is usually significantly nonzero [13]. Therefore, we are
expected to develop a new method that has high accuracy as
model-based methods and that does not require the true signal
model as model-free methods. The motivation is that, since
we cannot obtain the true underlying signal dynamics, we can
design an approximated model for this signal to bridge the
performance gap between the model-based methods and the
model-free methods, just like Zhai and Ye [15] do, where
the Wiener process model is used for the product’s lifetime
degradation series.

2) Outlier/Dropout Correction: Except for the well-known
noises, there exist other uncertainties, such as outliers
and package dropouts in range measurements. Such out-
liers/dropouts may be sparse or sometimes may be very
dense (see Fig. 1). Usually, if we define the ranging error

Fig. 1. Outliers/dropouts exist in UWB range measurements (real data
from a field test). A dropout in range time series is due to the absence
of a ranging-message package. When there is no reception of a message
package at a time instant, we value the current range as zero. Therefore, in the
figure, when the ranging measurement is zero-valued (magenta), it means
that the current ranging message package is lost. The outliers are in red.
(a) Outliers/dropouts are sparse. (b) Outliers/dropouts are extremely dense
(e.g., at times around 60∼75 s).

as “measured range minus true range,” dropouts introduce a
heavy tail in the left-hand side of the error distribution, while
outliers may introduce that in both the left- and right-hand
sides. We are required to identify such outliers/dropouts and
correct them afterward, i.e., using reasonable values to replace
these wild values. The problem becomes harder for a sce-
nario with very dense, or even successive, outliers/dropouts
(e.g., see Fig. 1). The natural choice for outliers detection
and removal is to use the M-estimation techniques [16],
which is based on the measurement innovation (i.e., the dif-
ference between the predicted value and the true measured
value). When the signal model is available and the predicted
measurement is far away from the true measurement, two
categories of methods can be adopted: 1) we treat the true
measurement as an anomaly and directly use the prediction to
replace (i.e., use a redescending influence function) [17]–[19],
or we use a carefully selected value near the prediction to
replace the true measurement (i.e., use a monotonic influence
function) [20], [21] and 2) we use a robust filter gain to
withstand the measurement uncertainties [22], [23]. When
the signal model is unavailable, the outlier detection is only
based on the collected measurement time series [24]–[26].
The nature of model-free methods is like the aforementioned
predict-and-replace method in which a time series forecasting
method is involved. The third choice for outlier rejection
in range-based positioning is to jointly use all the range
measurements (at a time instant) from all the available anchors
and then design proper optimization strategies with proper
criteria to identify and discard the outliers/dropouts from
a subset of the anchors [27], [28]. However, for the out-
liers/dropouts correction problem formulated in this article,
it is essentially a time series processing problem (namely,
it is temporal, not spatial), which denies this methodology.
Thus, the model-free methods that are only based on the
time series measurements from one single sensor should be
studied. In a nutshell, an efficient outliers’/dropouts’ detection
and correction strategy is to properly model the dynamics of
the signal (like Zhai and Ye [15] do) and then use a proper
predict-and-replace method (like Braei and Wagner [26] do).
The predict-and-replace methods are preferable because we
want to handle the very densely appeared, or successive,
dropouts/outliers.
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Fig. 2. Nonspecific (i.e., unknown of causing factors) sensor anomalies exist
in the UWB range measurements (real data from a field test). We can see that
Sensor 1 is problematic since its measurements in the rectangular are sharply
changing against Sensor 0 (in fact, according to Section III-A, Sensor 0 and
Sensor 1 should change in a roughly same way). Note that, for a macro-
object, its moving speed is limited, meaning that the curve of the ranging
measurements at a turning point should be smooth, with no sudden change.
In this case, it is impossible for us to model this type of uncertainty/anomaly,
so as to correct it afterward. Therefore, we can only identify it and exclude
the corresponding sensor from functioning.

3) Fault Diagnosis and Sensor Selection: It is well-known
that, in the 2-D positioning scenario, at least three anchors are
required to generate the localization, while, in the 3-D case,
at least four anchors are needed. However, in order to fuse
information from redundant reference base stations, more than
the least-required number of anchors are deployed and then use
the pseudo-TDOA bootstrap strategy [29] or the least-squares
methods [7], [30], [31] to improve the positioning accuracy.
The bad news is that, when some of the sensors in this sensor
bank are significantly unreliable, the participation of such
sensors will, on the contrary, deteriorate the positioning per-
formances [32]. This motivates us to identify those seriously
diseased sensors and forbid them from functioning to maintain
a desirable positioning accuracy. For example, Cong and
Zhuang [6] suggested excluding the identified NLOS anchors
and only use the LOS anchors for positioning. However, for
some types of nonspecific uncertainties contained in range
time series, we do not exactly know where it is from and how
it evolves. As an instance, see the sensor anomalies in Fig. 2.
Thus, we should design a method to quantitatively describe
such errors and remove the unreliable Sensor 1 from the sensor
bank. The main challenge is how to quantitatively describe
this type of error and then construct the effective features to
distinguish out its mother sensor. Note that whether a signal
section of the whole signal is abnormal or not is application-
specific, with no unified standards. For example, the “abnormal
phenomena” discussed in [33, Fig. 1] are not considered as
so in range measurements. On the other hand, the sensor
selection also exists in Fig. 1 where the sensor that generates
the dense outliers/dropouts [see Fig. 1(b)] should be excluded,
because, under this circumstance, we may think that this sensor
is extremely discredited so that we do not want to fetch
information from it anymore instead of using some methods
to rectify the diseased measurements. However, the most
attention to sensor selection in the literature has been paid
to the optimal and managerial functioning planning of sensors
in consideration of energy-efficiency, tracking performances,
and the like [34]–[36], namely, assuming that the sensors

have exactly known (and invariant) statistical information of
measurement noises. This assumption may be harsh to satisfy
in some real applications, as shown in Fig. 1. Although
other focuses on sensor selection also take into account the
negative influence of uncertainties in measurements, such as
outliers [27], [32] or signal-obstructing (i.e., unable to receive
a measurement signal) [37], the solution for the new type
of observed uncertainty in Fig. 2 is lacking and expected.
In summary, motivated by Gao et al. [38], we need to design
a proper signal model for the range measurements that can not
only differentiate the sharp-shaped anomalies but also describe
the smooth- and quick-changing normal patterns. Note that the
reason why we stress the property of quick-changing is that
we aim to avoid the biases due to the dullness of the filtering
method, as shown in Fig. 8(a). If the built signal model used
for filtering is sluggish, biases will exist.

C. Contributions

As we can see, all the three issues require us to design
a proper signal model for the ranging measurements, based
on which the denoising, the outliers’/dropouts’ detection and
correction, and the description to one type of nonspecific
anomalies in range measurements could be carried out. As a
summary, the contributions are listed as follows:

1) modeling a range time series as a nonstationary stochas-
tic process and identifying the derivatives of its mean
function as state variables;

2) incorporating the derivatives of a time series into the
filtering and forecasting processes to improve the fil-
tering and forecasting accuracy, which is useful in
outliers’/dropouts’ detection and correction;

3) using the derivatives of the mean function of a range
time series as the features to quantitatively describe a
kind of nonspecific anomaly in measurements and then
tell apart the morbid sensors from the sensor bank.

II. METHODOLOGY

A. Model a Signal and Define Its States

In Section I, we are motivated to construct a signal model
for the range time series (i.e., range signal). It is obvious that
the model has to encompass the following characteristics.

1) It is a stochastic process since it is noised.
2) It is nonstationary in the mean sense, i.e., the mean

function is not a constant one.
3) It is a recursive-type time-series model because only

in this way we can work on a sequential time series
(namely, a signal that is a time function), not just block
data.

4) It can exactly track the quick—but smooth—changing
signal.

5) It can tell apart a sharp-changing subsequence of the
range sequence as an anomaly.

Suppose that the range measurement (i.e., range time series)
from a sensor is x(t) or x(n) with t = nT , where t is the
continuous time, n is the discrete time, and T denotes the
sampling time. We are inspired to use a deterministic function
to model the mean function of x(t) and a Gaussian white
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stationary stochastic process to model the random part of x(t).
We have

x(t) = r(t)+ s(t) (1)

where r(t) ≥ 0 (a range measurement is always nonnegative)
is a deterministic function that models the true range and
s(t) is a white stationary Gaussian stochastic process that
models the stationary Gaussian white (measurement) noises.
The discrete version is

x(n) = r(n)+ s(n) (2)

where E[s(n)s(n + k)] = 0, ∀k �= 0. When there are uncer-
tainties other than noises in the range signal, the model will
instead be

x(n) = r(n)+ s(n)+ b(n)+ o(n)+ d(n) (3)

where b(n) denotes the biases, o(n) denotes the outliers, and
d(n) denotes the dropouts. As explained in Remark 1, we do
not study the bias term in this article. Therefore, all efforts
should be put on recovering the true range time series r(n)
from the uncertainty-corrupted range measurement time series
x(n). Since r(t) is deterministic and continuous, we can find
an order-sufficient polynomial f (t) to uniformly approximate
it. This is by the well-known Weierstrass approximation the-
orem. Generally, f (t) is with the form of

f (t) = f0 + f1t + f2t2 + · · · + fk tk + · · · (4)

where f0, f1, f2, . . . , fk, . . . are coefficients. Since f (t) is a
polynomial and thus smooth, we expand it, by Taylor’s series,
at the time instant n, leading to

f (t) = f (nT )+ f (1)(nT )

1! (t − nT )

+ · · · + f (k)(nT )

k! (t − nT )k + · · · . (5)

Because we are studying a discrete time series and we need
a recursive-type form, letting t = (n + 1)T and truncating at
the order of K , we have

f (n + 1) = f (n)+ f (1)(n)

1! T + · · · + f (K )(n)

K ! T K

=
K�

k=0

f (k)(n)

k! T k =
K�

k=0

T k

k! f (k)(n) (6)

that is, the signal model in (2) could be alternatively given as

x(n + 1) =
K�

k=0

T k

k! f (k)(n)+ s(n + 1). (7)

In (6) and (7), we use f (n) to indicate f (nT ). This is just
to follow the notation convention of the sampling theory. This
means that the full form of (2) is x(nT ) = r(nT )+ s(nT ).

In order to estimate the mean function f (n) = f (0)(n) and
its derivatives f (k)(n), k = 1, 2, . . . , K , we transfer the signal
model (7) into the state space by defining the state vector

X(n) :=

⎡
⎢⎢⎢⎢⎣

X0(n)
X1(n)
X2(n)
· · ·

X K (n)

⎤
⎥⎥⎥⎥⎦ :=

⎡
⎢⎢⎢⎢⎣

f (0)(n)
f (1)(n)
f (2)(n)
· · ·

f (K )(n)

⎤
⎥⎥⎥⎥⎦. (8)

Therefore, we can rewrite (6) as the state equation

X(n + 1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 T
T 2

2
· · · T K

K !
0 1 T · · · T K−1

(K − 1)!
0 0 1 · · · T K−2

(K − 2)!
...

...
...

. . .
...

0 0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

X(n). (9)

Besides, due to that we are observing the data stream of x(n)
[namely, the noised r(n)], we have the observation vector as

Y(n) := x(n) = f (n)+ s(n) (10)

that is, we have the following observation equation:
Y (n) := [ 1 0 0 · · · 0 ]X(n)+ V (n) (11)

where V (n) denotes the noise part s(n).
By introducing the process noise W(n), we have a

state-space linear Gaussian–Markov system [12], [39]	
X(n + 1) = �X(n)+ GW(n)

Y (n) = H X(n)+ V (n)
(12)

where

� :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 T
T 2

2
· · · T K

K !
0 1 T · · · T K−1

(K − 1)!
0 0 1 · · · T K−2

(K − 2)!
...

...
...

. . .
...

0 0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13)

H := [ 1 0 0 · · · 0 ] (14)

and

G :=



T K

K ! · · · T 1

��
. (15)

In (15), [·]� denotes the transpose of a matrix.
The process noise W(n) denotes the modeling errors,

such as: 1) truncation error from (5)–(6) and 2) the innate
impreciseness when using a polynomial f (n) to approxi-
mate the true range r(n). In (12), we treat W(n) and V (n)
as independent and Gaussian random variables [12], [39],
i.e., E[W(n)W �(n)] = Q(n), E[V (n)V �(n)] = R(n),
E[W(n)V �(n)] = 0, E[W(n)W �(n + k)] = 0, and
E[V (n)V �(n+ k)] = 0, ∀k �= 0. That is to say, Q(n) denotes
the covariance matrix of W(n), while R(n) denotes that of
V (n). In fact, W(n), V (n), Q(n), R(n), and Y(n) are all
1× 1 (i.e., scalars). We write them in boldface just to follow
the notation conventions for a state-space model.

In summary, (7) and (12) give the models of a range
measurement signal x(n), satisfying the five requirements
presented in the beginning of this section. The difference is
that (12) is defined in the state space.

By using the signal model (7) and (12) for a range measure-
ment x(n), we do not explicitly take into account uncertainties
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(e.g., outliers and dropouts) other than noises. The rationale
is that an ideally uncorrupted range measurement time series
contains only the true range r(n) and the observation noise
part s(n). The noise part s(n) is unavoidable since any
sensor would, more or less, introduce random noises into
the measured signal. Therefore, a range measurement signal
that contains outliers/dropouts would not fit the model (7)
and (12) well. It is this logic that makes possible the anomaly
(i.e., outlier/dropout) detection for a time series. We only need
to decide whether the measured range time series fit well the
model (7) or (12) or not. If not, we take actions to correct the
corresponding anomalies.

B. Choose the Model Order K

Usually, a larger K will cause less (polynomial) approxi-
mation error. However, in practice, there always exist uncer-
tainties in measurements and the Runge phenomenon in the
polynomial fitting. Thus, K should not be very large. By the
authors’ experiences from field tests and simulations, we sug-
gest that K should be 2 ∼ 5. K = 3 and 4 are typical choices.
More details about tuning K could be found in Section III.

C. Determine Q(n) and R(n)

Since R(n) denotes the ranging error variance, i.e., the
variance of the stationary noise process s(n) in (2), it is easy
to determine from the collected data in the field test. Note
that the stationarity of s(n) implies that R(n) = R(n) = R is
constant over time n. The first equality indicates that R(n) is a
scalar, while the second means that R(n) is constant. Suppose
that we have a part of collected range measurements X (n); we
can use the block-data off-line polynomial regression method
to extract its mean function �(n). The subtraction gives the
noise process S(n), i.e., S(n) := X (n) − �(n). Thus, R is
approximately given by the variance of the noise process S(n).

As for Q(n), in practice, engineers may try different feasible
Q(n) to obtain different performances. According to [39],
the value of Q(n) actually adjusts our trust level toward the
signal model that we use. Specifically, if we trust more of the
observed data from the sensor, we choose to use relatively
large values for Q(n). However, if we trust more of the
signal model, we choose to use relatively small values for
Q(n). According to authors’ experiences, it is sufficient to
let Q(n) keep constant, i.e., Q(n) = Q, for many specific
denoising and dropout/outlier correction problems. Therefore,
Q(n) = Q(n) = Q is also a 1 × 1 constant scalar, which is
easy to tune after determining R. Fortunately, given R, there
also exists an automatic method to determine Q [40].

D. Measurements Denoising and Outliers/Dropouts
Correction

Since we now have the state-space signal model (12),
we can use the model-based denoising methods. That is,
we aim to estimate the true signal f (n) and its derivatives
f (k)(n), k = 1, 2, . . . , K . This can be done by applying the
Kalman filter [39, Ch. 5.1] to the linear system (12).

During the denoising process, the outliers/dropouts can also
be detected and corrected by the predict-and-replace method.

Fig. 3. Influence functions used to identify and remove/attenuate the out-
liers/dropouts. � denotes the difference between the truly collected measure-
ment and the predicted measurement. (a) Redescending influence function.
(b) Monotonic influence function.

First, we mention that, if f (n + 1)� max{ f (n), f (n + 2)},
and | f (n + 2) − f (n)| < a constant, i.e., if f (n) and
f (n + 2) do not have very large difference, then we can
identify f (n + 1) as an outlier. If, alternatively, f (n + 1)	
min{ f (n), f (n + 2)}, and | f (n + 2)− f (n)| < a constant,
f (n + 1) is also an outlier. In this case, if simultaneously
f (n + 1) = 0, f (n + 1) is also a dropout. Second,
we show the outlier/dropout identification and correction in
our methodology. Suppose that the prediction of x(n + 1) is
f̂ (n + 1). If the predicted value is far away from its noised
measurement, we identify x(n + 1) as an outlier/dropout.
Mathematically, if

|x(n + 1)− f̂ (n + 1)| > � (16)

x(n + 1) is an outlier/dropout. Then, x(n + 1) is replaced by
f̂ (n + 1). � is a preset threshold. Note that f̂ (n + 1) is
available from the Kalman filter. By doing so, we are actually
utilizing the M-estimation techniques [16] with a redescend-
ing influence function shown in Fig. 3(a). Specifically, for
example, if the error � := x(n + 1) − f̂ (n + 1) > �,
we replace x(n + 1) with f̂ (n + 1) so that � = 0. Another
possible alternative for an influence function is the monotonic
influence function shown in Fig. 3(b). It means, for example,
that, if � := x(n + 1)− f̂ (n + 1) > �, we replace x(n + 1)
with f̂ (n + 1) + � so that � = �. As we can see, in the sec-
ond case, we are not removing an outlier/dropout. Instead,
we are attenuating an outlier/dropout. Other possible influ-
ence functions include Hampel’s redescending function [18],
the student’s t redescending function [41], and so on. However,
they still require one or more threshold parameter(s) (such as
� in Fig. 3) to be carefully tuned.

In summary, we have Algorithm 1 to denoise and correct
dropouts/outliers, in which the influence function in Fig. 3(a) is
used to remove the dropouts/outliers. Other influence functions
are also applicable. We do not cover the details.

According to [42, Th. 2], it is safe to set X̂(0) ← 0
regardless of the true X(0) because the estimated value X̂(n)
converges to the true value X(n) in the sense of unbiased
minimum variance, as n → ∞ for any finite X̂(0). For the
rigorous and complete proofs, refer to [42].

Remark 2: Note that the difference-based method
(e.g., [x(n)− x(n − 1)]/T ) for estimating the derivative(s) of
the mean function of a noised time series x(n) is not reliable
since the noises will be amplified by the difference operator.
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Algorithm 1 Denoising and Outliers/Dropouts Correction
Definition: P as the state estimate co-variance in Kalman
filter; I , 0 as an identity, null matrix with proper dimension;
∞ as a big number.
Notation: f̂ (n) is the estimated/predicted value of f (n);
X̂(n) is the estimate of X(n).
Initialization: ∞← 105, X̂(0)← 0, P(0)←∞× I , Q, R,
�, f̂ (1)← x(1).
Remark: We can also let n starts from N instead of 1 and
use the median of the first N measurements xmedian(1:N) to
initialize f̂ (N)← xmedian(1:N). This is a practical trick in case
that outlier exists in the first several measurements. In the
experiments section of this article, we use N = 4.

Input: x(n), n = 1, 2, 3, . . . // or n =
N, N + 1, N + 2, . . .

1: while true do
2: // Outliers/Dropouts Identification and Correction
3: if | f̂ (n)− x(n)| > � then
4: x(n)← f̂ (n) // Identified and Do Correction
5: end if
6:

7: // Estimate f̂ (k)(n) and Predict f̂ (n + 1)
8: [X̂(n), f̂ (n + 1)] = Kalman_Filter[x(n)]
9: f̂ (n)← X̂0(n)

10:

11: // Next round
12: n← n + 1
13: end while
Output: Noise attenuated and outliers/dropouts corrected

ranging measurements f̂ (n), and its derivatives X̂(n)

Fig. 4. Features of range measurements to distinguish Sensor 1 from others
(see Fig. 2). (a) Second-order derivatives of the ranges in Fig. 2 (transformed
measurements). (b) Absolute values of (a).

This fact is fundamental in the signal processing community,
and we will not go through the details [43]. This is why we
define the state variables and use the Kalman filter to recover
f (n) and its derivatives. �

E. Anomaly Diagnosis and Sensor Selection

First, we use the problem in Fig. 2 as a running example
to demonstrate the anomaly diagnosis and sensor selection
method proposed in this article. In fact, the anomaly in Fig. 2
could be easily distinguished out by the derivatives of ranges
(see Fig. 4). Therefore, the original time series classification
problem (see Fig. 2) could be carried out in the feature
space, namely, treating the second-order derivative of a range

Fig. 5. Leave-one-out method. Four sensors clustered into two classes by
distances. (a) � is larger than the given threshold so that the red point (right
top) is not kept in the same class as the three rest blue/green (left bottom)
points (four points not in the same class). (b) � is smaller than the given
threshold so that the blue point (left top) remains in the same class as the two
green (right bottom) points (three points in the same class).

time series as its feature. Comparing Fig. 4 with Fig. 2,
the transformed four time series are easier to classify. It is
obvious that, during the times around 30∼50 s, Sensor 1
significantly stands out in the feature space illustrated in Fig. 4.
Now, the sensor selection problem is transformed into a time
series classification problem [44]. We could, respectively,
apply the l p-norm to calculate the distance between any
two range time-series measurements and then use the
distance-based clustering method, such as k-means in the
machine learning community to group the four range series.
Suppose that the length of the two range time series x1(n) and
x2(n) is L; the distance between x1(n) and x2(n) is given as
Dx1,x2 = [

�L
n=0 |x1(n)− x2(n)|p]1/p. Typical choices for p in

practice, according to [44] and also authors’ experiences, are
p = 1 or p = 2. However, the time series range measurements
are obtained in the stream, not in block, meaning that we
cannot apply the L-length l p-norm to the whole x1(n)
and x2(n) post hoc. Therefore, in practice, we apply the
L-length l p-norm to successive subsequences of, for example,
x1(n), i.e., the subsequences {x1(1), x1(2), . . . , x1(L)},
{x1(2), x1(3), . . . , x1(L + 1)}, {x1(3), x1(4), . . . , x1(L +
2)}, . . . , {x1(m), x1(m + 1), . . . , x1(L + m − 1)}, and so on.
Whenever one of the sensors is significantly away from
the rest three sensors at one time instant, the sensor should
be excluded from the functioning sensor bank at this time
instant. Following this logic, UWB Sensor 1 in Fig. 2 must
be excluded. When there are many anchors available for
positioning, there may exist more than one unreliable sensor.
Therefore, we should continuously apply this “leave-one-out”
idea to remove the dysfunctional sensors, one by one, until
there are at least four sensors left for 3-D positioning or at
least three sensors left for 2-D positioning. Fig. 5 illustrates
the idea of the leave-one-out method, in which � denotes the
distance from the removed point to the circle containing the
rest points. The center of the circle is the point obtained from
averaging the children points, and the radius is the largest
distance from the center to the children points.

Second, in Algorithm 2, we, summarize the proposed sensor
selection method.

Remark 3: The proposed sensor selection method in this
section is ad hoc for one type of nonspecific UWB ranging
anomalies shown in Fig. 2, which may occur sometimes in
some environments. Thus, we are not claiming the generality
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Algorithm 2 Sensor Selection
Definition: L: Length of the sub-sequence. �: Threshold to
determine whether a sensor is problematic or not
(i.e., threshold of �). M: Number of anchors available
(i.e., number of range time series). X̂m

k (n): Estimated
kth-order derivative (e.g., k = 2) of the range time series
from mth anchor. Dist(x , y): Calculate the distance of two
time series x and y based on l p norm. X (S : E): A
sub-sequence of X with indices starting from S and ending
at E . ∅: Empty set. ī : Index of the sensor removed by the
leave-one-out method.
Reservation: I(n): the index set of the malfunctioning
sensors at the time instant n.
Initialization: ∞← 105, �←∞, k, L, �.
External: Call Algorithm 1 to obtain X̂

m
(n) for the range

time series from the mth anchor. cf. X̂(n) and X̂k(n) in (8)

Input: X̂m
k (n), m = 1, 2, 3, . . . , M , n = L + 1, L + 2, . . .

1: while true do
2: // Get the distances between X̂ i

k(n) and X̂ j
k (n)

3: for i = 1 to M do
4: for j = 1 to M do
5: S← n − L
6: E ← n − 1
7: D(i, j) = Dist{X̂ i

k(S : E), X̂ j
k (S : E)}

8: end for
9: end for

10:

11: // Do leave-one-out clustering and sensor selection
12: I(n)← ∅
13: while ∃ more than least-required no. of anchors do
14: ī ← Leave_One_Out(D)
15: Calculate � // See Fig. 5
16:

17: // Sensor Selection
18: if � > � then
19: I(n)← I(n)



ī // This is a morbid sensor

20: continue while
21: else
22: break while
23: end if
24: end while
25:

26: // Next round
27: n← n + 1
28: end while
Output: The morbid sensor set I(n) at each time instant n

of the proposed method in any situation. If engineers encoun-
tered other types of specific or nonspecific anomalies discussed
in other related studies [27], [32], [33], [37], they could refer
to corresponding works for a more appropriate method. �

III. EXPERIMENT RESULTS AND ANALYSES

All the source data and codes are available online at GitHub:
https://github.com/Spratm-Asleaf/Range-Correction.

Fig. 6. UWB ranging circuit. Bluetooth is used to transmit the measured
range to the remote server, e.g., a computer to collect range data. (a) Topology.
(b) Real.

Fig. 7. UWB test field with a dimension of 61 × 4.3 m2. The orange dotted
rectangular trajectory (starting from the purple-filled circle) is used to collect
the ranging measurements displayed in Fig. 1. A0, A1, A2, and A3 are UWB
anchors. The origin of the coordinate is fixed on A0. (a) Test field (topology).
(b) Test field (real).

A. Real Field Test

1) Settings: The UWB module embedded in our
ranging circuit is DWM1000 produced by DECAWAVE
(https://www.decawave.com/product/dw1000-radio-ic/).
We integrated together with the UWB module, UWB antenna,
power, power amplifier circuit, clock, communication buses
[i.e., serial peripheral interface (SPI)], microcontroller
(i.e., STM32F103C8T6), and Bluetooth to build the ranging
circuit (see Fig. 6). The ranging protocol is the symmetric-
double-sided two-way time-of-arrival (SDS-TW-TOA) based
on the IEEE Standard 802.15.4a [45].

The UWB testing field that we were working in to collect
the data in Fig. 1 is illustrated in Fig. 7. The trajectory starts
from the purple-filled circle and is along the orange-dotted
rectangular. We walked along the rectangular trajectory for
almost two rounds. Fig. 1(a) shows the ranging measurements
from the A3 while Fig. 1(b) from the A0. The sampling time
is T = 0.1 s. The variance of ranging errors is R = (0.05/3)2

(from the real data, 3σ = 5 cm, and σ is the standard
deviation). For details of getting R, see Section II-C.

2) Performances of Denoising and Outliers/Dropouts
Correction: In this first experiment, as a demonstration,
the parameters are set as K = 3, Q = 0.012, and � = 2.0. Q
and � are tunable parameters and determined case-by-case. In
Fig. 8, we display the denoising performance of the proposed
method compared with that of the traditional exponential
smoothing method. In Fig. 9, we show the performances of
denoising and outliers/dropouts correction using Algorithm 1.
The data used are the same as in Figs. 1 and 7. From
Fig. 9, we can see that the proposed method can effectively
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Fig. 8. Denoising performances of the traditional signal-model-free exponential smoothing (ETS) method and the proposed method when the target is in
static (i.e., time from 0 to 10 s) and in high-maneuvering (i.e., time from 10 to 15 s). (a) and (b) ETS has large biases but small fluctuations. (c) and (d) ETS
has small biases but large fluctuations. We can see that, if the ETS has small fluctuation when in static, it must have large biases when in high-maneuvering
[see (a) and (b)], and vice versa [see (c) and (d)]. That is to say, the traditional denoising method either has large fluctuations or has large biases. This
dilemma has to be met, and we cannot detour. However, the proposed method can balance the two performances. The unit in the y-axis is meter. The data
are from A0. (a) ETS parameter = 0.25. (b) ETS parameter = 0.25 (closeup). (c) ETS parameter = 0.75. (d) ETS parameter = 0.75 (closeup).

Fig. 9. Performances of denoising and outliers/dropouts correction using Algorithm 1. The unit in the y-axis is meter. (a) Measurements from A0. (b) Closeup
of (a). (c) Measurements from A1. (d) Closeup of (c). (e) Measurements from A2. (f) Closeup of (e). (g) Measurements from A3. (h) Closeup of (g).

eliminate the fluctuations in the ranging measurements [see
Fig. 9(d) and (f)] and identify and correct the outliers/dropouts
[see Fig. 9(f) and (h)], even when the outliers/dropouts are
very dense [see Fig. 9(b) and (c)].

3) Comparison Experiments: In this section, we com-
pare the algorithm performance with some of the existing
representative methods, over the range measurements from
A1. The � and Q keep unchanged as 2.0 and 0.012,
respectively.

First, we compare with one statistical outlier-correction
method introduced in [24] (i.e., one-sided median method).
In the one-sided median method, the parameters are set as
κ = 10 and τ̃ = 8.0 (see [24, Sec. 3.2]). If we set K = 1,
K = 2, K = 3, and K = 4, respectively, we have the
results in Fig. 10. As we can see, all methods could roughly
behave well, besides the one-sided median method although it
is already equipped with the tuned parameters (i.e., κ and τ̃ )
that have the best performances. Furthermore, when outliers
and dropouts are dense, larger K will, on the contrary, lead to
large errors [see times around 155 ∼ 160 in Fig. 10(b) and (c)].
On the other hand, if K is extremely small, e.g., when K = 1,
large errors would also be introduced. Therefore, in this case,
Algorithm 1 with K = 2 or K = 3 basically gives satisfactory
solutions.

Fig. 10. Performances of denoising and outliers/dropouts correction using
Algorithm 1 with different K ’s over the real data (measurements from A1).
When K = 4, there is a significant vibration in (b) during times around
155 ∼ 160. (a) For K = 3, it does not have this phenomenon. (a) K = 1, 2,
and 3. (b) Closeup of (a). (c) Closeup when K = 1, 2, and 4.

Second, we implement a robust method introduced in [22]
to compare the performances with Algorithm 1 (K = 3).
Q and � remain unchanged as before. The results are
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Fig. 11. Comparison experiments between Algorithm 1 and a robust
filtering [22]. The robust filter cannot guarantee a convergent solution for
the range measurements with dense outliers.

Fig. 12. Positioning results [see Fig. 7(a)]. (a) Positioning results are
obtained using the original range measurements and the corrected ranges
with Algorithm 1 with K = 3. (b) Positioning results are obtained using
different K ’s and the one-sided median. (c) Positioning results are obtained
using K = 3 and the robust method.

shown in Fig. 11. As we can see from Fig. 11, the robust
filter even cannot guarantee a convergent solution for the
range measurements with dense outliers (see times during
50 ∼ 100) although there are relatively effective for sparse
outliers/dropouts (see times during 100 ∼ 150).

4) Positioning Results: Then, we implement a multiple-
anchor positioning method in [29] to obtain the real-time
position of the UWB receiver, in which the ranges are
squared and subtracted so that the range-based TOA problem
is transformed into a pseudo-TDOA problem (see Fig. 12).
As we can see from Fig. 12(a), without correcting ranges,
the positioning results with the original range measurements
are really unsatisfactory. There are severe noises and outliers.
However, if we use the corrected ranges from Algorithm 1 with
K = 3, we can obtain noticeably better positioning results.
In contrast, Algorithm 1 with K = 1 and the one-sided median
method are not satisfactory because there still have some
outliers in the positioning results. The robust method even
diverges (i.e., it even performs worse than the raw ranges).

5) Performances of Outlier/Dropout Treatment Under Dif-
ferent �’s: In fact, the threshold � in Algorithm 1 matters a

Fig. 13. Threshold � of Algorithm 1 matters a lot (see Fig. 10 where � = 2).
(a) Small � = 0.7. (b) Big � = 15. (c) Closeup of (b).

Fig. 14. Range error histogram of A0. Most of errors are around zero.
However, there is a significant sidelobe in the error distribution.

lot. When it is too small, the algorithm cannot be guaranteed
to converge; when too large, significant errors would exist.
This is easy to understand from the logic of the algorithm.
Intuitively, see Fig. 13. Other parameters and the data used are
the same as those in Fig. 10 (namely, K = 3 and Q = 0.012).
Therefore, at present, we can only carefully choose proper �
for each specific problem. We expect an adaptive/automatic
tuning method for it in the future.

6) Range Error Histogram: If we use the corrected ranges
from Algorithm 1 with K = 3 as the true ranges, we can obtain
the ranging errors of A0. The histogram is shown in Fig. 14.
As we can see, it is a multiple-modal distribution that is far
away from a Gaussian distribution or a student’s t distribution.
Therefore, statistical outlier-rejection methods based on the
assumption of a student’s t distribution [46] or on a skew
Gaussian-gamma mixture distribution [47] are not preferable
for our range-correction problem.

7) Mean Square Error: Since it is hard to obtain the exactly
true ranges against the time of a moving target, we cannot
calculate the mean square error (mse) between the corrected
range time series and the true range time series. Even though
the moving target can exactly follow a fixed straight-line
trajectory, different moving (but unobservable) speeds generate
different range time series (see Fig. 15). For the same reason,

Authorized licensed use limited to: Imperial College London. Downloaded on September 19,2023 at 15:04:11 UTC from IEEE Xplore.  Restrictions apply. 



1007613 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 70, 2021

Fig. 15. True range time series r depends on the true but unobservable
moving speed v . (a) Target is moving from A to C via B (B is the middle
point of A and C). In the first round, the true speed v is fixed as 1 m/s, while,
in the second round, the true speed from A to B is 1 m/s but from B to C is
2 m/s. (b) Two range time series associated with (a).

Fig. 16. Simulated field. We are investigating the range between anchor A and
rover B. Rover B is moving along the circle centered at O, counterclockwise.

we cannot obtain mse between the true trajectory and the
calculated trajectory because we also do not know the true
position (against time) of the moving target. Thus, another
experiment is conducted over a simulated dataset where the
ground truth of range-time data pairs is available so that we
can calculate the corresponding mses.

B. Simulated Test

1) Setting: Suppose that the simulated ranges are from a
circle trajectory in one testing field (see Fig. 16). Therefore,
the square of the range time series must be a sine function.
Note that, if the position of O is [x1, y1] and that of A is
[x0, y0], we have the range time series as

d =
�
[x1 + r cos θ − x0]2 + [y1 + r sin θ − y0]2

= �
α + β cos θ + γ sin θ

= �
α + ξ sin φ (17)

where θ and φ are independent variables of d and constant
coefficients α, β, γ , and ξ are defined by x1, y1, x0, y0, and r .
Therefore, d2 is a sine function.

Without loss of generality, we suppose that the interested
range time series is

x(n) = �
401+ 400 sin(0.1× 0.1× n)+ 0.1 GW(n)

that is, the sampling time is still 0.1 s (recall that t = T n),
where GW(n) denotes a Gaussian white stochastic process
with the mean of 0 and the variance of 1. In this experiment,
in order to noticeably see the performance of the proposed
algorithm, we improve the standard deviation of the Gaussian
white process to 0.1 m (instead of the small 0.05 m/3 in
the real data). Therefore, there is a coefficient 0.1 before

Fig. 17. Performances of denoising and outliers/dropouts correction using
Algorithm 1 with the simulated data. (a) Simulation results. (b) Closeup of (a).

Fig. 18. Comparison experiments between Algorithm 1 and the one-sided
median method with the simulated data. (a) Simulation results. (b) Closeup
of (a).

TABLE I

MSE RESULTS OF THE SIMULATED EXPERIMENT

GW(n). The simulation runs max (n) = 1200 steps. Besides,
we randomly add 20 outliers and 100 dropouts in x(n).

2) Performances of Denoising and Outliers/Dropouts
Correction: In this case, R = 0.12. The parameters � and Q
keep unchanged as 2.0 and 0.012, respectively. We implement
Algorithm 1 with K = 1, 2, and 3 and the one-sided median
method in [24]. In the one-sided median method, the para-
meters are set as κ = 10 and τ̃ = 2.0 (see [24, Sec. 3.2]).
We have the results in Figs. 17 and 18.

Also, we give the mse, compared to the true ranges
(because, in this experiment, we know the true ranges against
time), of the denoised/corrected range measurements with
different methods, and nondenoised and noncorrected range
measurements, respectively, in Table I. We can see that all
these methods are effective in denoising and removing the out-
liers/dropouts. However, Algorithm 1 with K = 3 outperforms
the others. This is because Algorithm 1 with K = 1 and 2
introduces the biases when denoising a quick-changing signal
[like the exponential smoothing method does (see Fig. 8)],
while the one-sided median method has no innately designed
mechanism to denoise.

Besides, for the comparison purpose, we also implement
the robust filtering method introduced in [22]. The result is
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Fig. 19. Comparison experiments between Algorithm 1 and the robust
filtering [22]. (a) Sine range time series. (b) x(n) = 1 + 0.1n + 0.1GW(n);
time series is slow-changing, and outliers/dropouts are sparse.

TABLE II

PURE DENOISING PERFORMANCES UNDER DIFFERENT K ’S

given in Fig. 19(a). As we can see from Fig. 19, although the
robust filtering method in [22] can withstand the uncertainties
to some extent, it also denies the quick-changing pattern of
a ranging time series. That is, it introduces the biases when
the time series is quick-changing because the robust filtering
treats the quick-changing part of a time series as uncertainty
and takes effort to revolt it. This is an innate drawback of
all robust filtering strategies. Contrarily, when the time series
is slow-changing and outliers/dropouts are sparse, the robust
filtering method could have a relatively desired performance.
See Fig. 19(b), in which x(n) = 1 + 0.1n + 0.1GW(n).
However, the imperfection of removing outliers/dropouts still
exists; for example, see the subfigure around t = 82.5 s of
Fig. 19(b), in which, although the outlier is to some degree
suppressed, a jitter still appears.

C. Performances of Pure Denoising Under Different K’s

In order to compare the pure denoising performances,
we compare Algorithm 1 with different K ’s for range mea-
surement without outliers. This time, let us consider x(n) =
(401+ 400 sin(0.1× 0.1× n))1/2+GW(n) with the sampling
time of 0.1 s but the variance of GW(n) is, instead, larger
(i.e., 1 m). We implement Algorithm 1 with K = 1, K = 2,
K = 3, and K = 4, respectively. Besides, we set R = 12

and � = 2.0. As we can see form Table II, a relatively
larger K is likely to lead to less estimation errors because
the model with a smaller K cannot track the quick-changing
pattern of a range time series [i.e., having large tracking bias.
(see Fig. 8)]. However, this is conditioned on how to select
Q. Sometimes, the model with an extremely large K would,
in turn, be sensitive to noises, and it would introduce larger
mse.

D. Sensor Selection

We use Algorithm 2 to select the malfunctioning sensor
in Fig. 4. The parameters are set as L = 50 and � = 15.
We have the result in Fig. 20. The result is consistent with

Fig. 20. Sensor selection result using Algorithm 2 over Fig. 4. If the value of
“Bad Sensor” is −1, there is no bad sensor at present. The value is 1 means
that Sensor 1 is identified as a diseased sensor.

our expectation that Sensor 1 is morbid during the time period
[32.3, 53.8]. We note that there is a small time delay in the
result. This is because we use the window length of 50.
However, the strict tuning methods for L and � are open.
At present, we can only suggest that the authors should try
proper values for their own specific problems.

E. Highlights on Experiments Results

Experiments show that the proposed method is power-
ful in tracking the true information of a range time series
(i.e., no bias), in suppressing the random noises, identifying
and correcting the outliers/dropouts, and reporting one kind of
nonspecific anomalies in the range measurements. The main
results from the experiments are given as follows.

1) The typical choices for K are 2, 3, and 4. The model
with both very large and very small K is likely to
have large filtering errors. Specifically, a larger K is
suitable to track the quick-changing pattern of the
range time series, which will help lower the filter-
ing biases. However, when outliers/dropouts are very
severe/dense, the model with a larger K is vulnerable
to them as well. In contrast, a smaller K is suit-
able to track the slow-changing pattern of the range
time series, which will also help withstand the (dense)
outliers/dropouts. However, when outliers/dropouts are
relatively slight/sparse, a smaller K is likely to introduce
larger filtering biases when tracking a quick-changing
time series. In particular, K = 2 and 3 are suitable for
range measurements with dense outliers/dropouts, while
K = 4 is proper for range measurements with sparse (or
without) outliers/dropouts.

2) The tuning method of the threshold � in Algorithm 1 is
open. A too small value is likely to make the algorithm
divergent, while a too large value may lead to signif-
icant jerks, i.e., vulnerable to severe uncertainties [see
Fig. 13(c)]. Besides, the tuning method of the parameters
L and � in Algorithm 2 is also empirical. At present,
the authors’ can only suggest that readers try appropriate
values for their specific problems.

3) As stated in Remark 3, the sensor selection method that
we presented only provides one possible alternative for
engineers, asserting no dominating position over other
participant methods in any situation.
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4) When range measurements are reliable for sure,
Algorithm 1 could be reset and restarted. If the range
measurements were not informative in the past, the pre-
dictions for the future would be questionable. Thus,
when the users believe that reliable range measure-
ments come again, they can clean the bad memory of
Algorithm 1.

IV. CONCLUSION

This article introduces a new state-space stochastic-process
model for a nonstationary stochastic time series and identifies
the derivatives of its mean function as state variables. The
model has benefits as follows.

1) It equips a general time series with a state-space model
that enables the use of the model-based signal processing
methods.

2) It is a recursive-type time series that is workable for
sequential data.

3) It can exactly track the quick—but smooth—changing
time series due to the participation of the derivatives.

4) It can tell apart a sharp-changing subsequence of a time
series as an anomaly.

5) It coincides with the standard form (i.e., a linear
Gaussian–Markov model in the state space) required in
the Kalman filter settings so that the defined states can
be estimated by the Kalman filter.

The proposed outlier/dropout treatment method is functionally
complementary to the traditional NLOS/LOS error elimination
methods in the sense that the following holds.

1) It can efficiently filter the random noises.
2) It can handle the dropouts and signal-processor-related

outliers that cannot be addressed by the traditional
NLOS/LOS error elimination methods.

3) It can identify one sort of nonspecific sensor anomaly
(see Fig. 2) that cannot be detected by the traditional
NLOS/LOS error elimination techniques and existing
sensor selection methods.
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