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a b s t r a c t 

Joint estimation and identification to the linear system with unknown input(s) (UI, UIs) is critical in the 

control community as well as signal processing. In this paper we present the solution to the problem 

based on the expectation-maximization (EM) method to alternately estimate system states and identify 

the UIs. The dominant advantage of the proposed method is that we could handle the UI(s) in not only 

the system dynamics model but also the measurement model. Specifically we make the following contri- 

butions: (1) providing the rigorous mathematical definitions of the problem, (2) theoretically proving the 

existence and uniqueness of the solution to the joint estimation and identification problem, (3) present- 

ing the theoretical proof of convergence and effectiveness of the EM-based algorithm, and (4) supplying 

with sufficiently insightful explanations for the mathematical derivation. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

Although theories of linear system analysis seems at times less

effective com pared to some non-linear analysis techniques for cer-

tain groups of problems with non-linear properties [1–3] , it is un-

deniable that presently for relatively large numbers of existing real

industrial ones, e.g. those being with natural linear-pattern dynam-

ics, or being without a prior knowledge of dynamics so as to un-

avoidably use a linear model to refactor, linear system theory is

still irreplaceable, and needs to be further developed. 

One of the open and hot problems in the optimal estimation

and system identification is system analysis with unknown inputs

in not only (either) dynamics model but also (or) measurement

model. This phenomenon was partially noticed and reported many

times since 1975 [4] . Mathematically, according to Lan et al. [5] ,

the discrete-time linear stochastic system with unknown inputs is

given in (1) {
x k +1 = F k x k + �k q k + M 

0 
k 
u k + M k a k 

y k +1 = H k +1 x k +1 + v k +1 + N 

0 
k +1 

u k +1 + N k +1 b k +1 , 
(1)

where x k , x k +1 ∈ R 

n and y k +1 ∈ R 

m are n -dimensional state vector

and m -dimensional measure vector, respectively. The n × n system

dynamics matrix F k , n × s noise-driving matrix �k , input-driving

matrix M k of dimension n × d , matrix N k +1 of dimension m × r and
∗ Corresponding author. 
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 × n measure matrix H k +1 are all known. Besides, e × 1 vector

 k is known input signal, and M 

0 
k 
, N 

0 
k +1 

are input driven matrix

ith proper dimensions for u k . All matrices of F k , �k , H k +1 , M 

0 
k 
,

 

0 
k +1 

, M k and N k +1 are of full column rank. The s -dimensional pro-

ess noise q k and m -dimensional measure noise v k +1 are all zero-

ean white Gaussian noises with known s × s covariance matrix

 k > 0 and m × m covariance matrix R k +1 > 0 , respectively. The ini-

ial state x k | k =0 is Gaussian distributed with pre-given mean x 0 
nd co-variance �0 . Moreover, q , v and x 0 are assumed to be

utually independent since many industrial processes show this

roperty. Finally, we note that d -dimensional vector a k ∈ R 

d and r -

imensional vector b k +1 ∈ R 

r are unknown inputs. For simplicity

nd without loss of generality, we in this paper treat the known

eterministic input signal u k as zero through the time. 

The unknown inputs, according to [5–11] , could typically be

rocess noises, modelling errors, sensors’ fault, actuator faults,

harp manoeuvres in target tracking problems, and man-made

ams as in electronic countermeasure. When these uncertainties

ppear in practical problems, the unawareness may cause disas-

ers. Because the traditional Kalman filer is no longer powerful for

hose problems so that the estimate error would be out of control

r even diverge [12–14] . The problem of jointly estimating the sys-

em states and identifying the system particulars is termed here as

inear joint estimation and identification problem (LJEIP) and for-

atted by the Eq. (1) . Obviously, the objective of solving the LJEIP

s to estimate system states x k and identify system particulars, a k 
nd b k , simultaneously. 

https://doi.org/10.1016/j.sigpro.2019.03.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
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In engineering, literatures pay multiple attentions on various

pecific problems derived from the system (1) . Because the un-

nown inputs a k and b k +1 could be deterministic [15] , stochastic

12] or mixed [10,16,17] signals. Different from this perspective, an-

ther novel angle is that the unknown inputs could exist merely in

ystem model [4,12] , measurement model [8,18] or both [5,10,17] .

bviously, different settings mean different oriented solutions be-

ause none of the existing methods is optimal for all problems, in

onsideration of solution accuracy, convergence speed, robustness

nd so on. Among them, worthy of mentioning is the follow-

ng five classes of methodologies: (a) unknown input observer

19–22] ; (b) adaptive and robust filter [12,13,23,24] ; (c) multiple

odel [22,25–29] ; (d) minimum upper bound filter [12,30] ; and

e) linear minimum variance estimator [18,31–33] . They aim to

ettle different categories of problems with different formulations

or assumptions) or different optimality criterions. For example,

he robust filter concerns more on the infinity norm, while linear

inimum variance estimator cares the two norm (Euclid norm).

or specific application scenarios, oriented solutions stand out. 

That the uncertainties exist both in system model and measure-

ent model is more general and getting increasing attention from

cholars over the time [5,10,34] . In 2013, Lan et al. [5] firstly pro-

osed a method based on expectation-maximization (EM) idea to

ackle this problem and the proposed solution worked very well

n practice. Unfortunately, the authors did not provide comprehen-

ive theoretical investigation for this important problem. As far as

e know, there neither exist rigorous theoretical studies for it in

he existing literatures [35] . Due to the significance of this prob-

em, we aim to make it up and provide the extension with theo-

etical results of optimal joint estimation and identification of lin-

ar stochastic system with unknown inputs. Our contributions are

ummarized as follows. 

(1) We provide rigorous mathematical definitions and deriva-

ions in using an EM based solution to calculate x k , a k and b k in

he LJEIP. We also identify and fix mathematical errors in [5] ; 

(2) We consider a more general case that �i −1 Q i −1 �
T 
i −1 

could

e non-invertible, which was not discussed by Lan et al. in [5] . For

etail, see Remark 5 ; 

(3) We theoretically prove the existence and uniqueness of the

olution (the estimates to x k , a k and b k , that is, ˆ x k , ˆ a k and 

ˆ b k ) to

JEIP (1) ; 

(4) The effectiveness and convergence of the EM-based solution

o the LJEIP is theoretically proved; 

(5) We replace the optimal smoother from forward-backward

lgorithm with the RTS algorithm to improve the computational

fficiency; 

(6) Insightful explanations are given for deriving theories to the

JEIP. 

For simplicity, we in this paper still only concern the case that

 k and b k +1 are unknown deterministic signals, not random vari-

bles. Thus the system (1) could be a Gaussian one. For more on

his point, we give Assumption 1 as a premise of our mathematical

erivation. 

ssumption 1. It should be clearly noted that in this paper, specif-

cally in (1) , a k and b k +1 are not random variables. They instead are

eterministic signals although we do not know their real values. In

his sense, the system (1) is still a Gaussian system, since the exist-

ng random variables q k and v k +1 are normally distributed. Alter-

atively, we have the equivalent analysis on this point. We could

reat the term �k q k + M k a k of (1) in state model as a whole part,

otated as a new Gaussian variable Z k . Then Z k is a normal ran-

om variable with mean of M k a k , and the variance of �k Q k �
T 
k 

. The

tory keeps similar to the term v k +1 + N k +1 b k +1 of (1) in measure-

ent model. It is with the mean of N k +1 b k +1 , and the variance of

 k +1 . 
As a snapshot, we emphasize here that the main contribution of

his paper, the solution to the LJEIP, is termed as the optimal lin-

ar joint estimation and identification theorem (LJEIE) to the lin-

ar Gaussian system with unknown inputs, which is detailed in

heorem 4 . 

The remaining paper is structured as follows. We illustrate the

elationship between current study and Lan et al. [5] in Section 2 .

ollowing it, Section 3 introduces the Rauch-Tung-Striebel (TRS)

36] fixed-interval smoother and analyzes its properties. We con-

uct theoretical study to the LJEIP in Section 4 which includes

roof of existence, uniqueness of the solution to the LJEIP, and the

roof of effectiveness, conver gence of the EM-based frame to find

he solution. In order to demonstrate the effectiveness and effi-

iency of the proposed LJEIT, we design a simulation experiment of

arget tracking in Section 5 and analyze the corresponding simula-

ion results. In the end, we conclude the whole work and discuss

he possible future work in Section 6 . 

Before proceeding to the next section, we present several re-

arks. 

emark 1. Joint estimation and identification problem to linear

aussian system is actually the inverse problem of a linear system.

ecause, obviously, a regular system maps the inputs into system

tates and outputs. Contrarily, the joint estimation and identifica-

ion problem maps the outputs into system states and inputs. 

emark 2. A typical scenario that could be modelled as problem

1) would be given as: suppose the real system model is F , and

he modelling result is ˆ F . Thus there is a difference �F between F

nd 

ˆ F , that is, �F = F − ˆ F . In this case, the estimate to states would

ave a bias �F k x k . However, we could use the model M k a k to elim-

nate or at least weaken this bias, since M k could be determined

ith the experience knowledge in engineering. At worst, M k could

lways be treated as n × n identical matrix I . 

emark 3. In engineering, requiring the matrices F , �, H , M and N

re of full column rank is reasonable and even necessary. Because

t means all the information contained in states variables or inputs

ill be used. 

emark 4. In engineering, requiring the matrices Q and R are of

ull-rank (namely invertible) are reasonable and practical. For R , it

s without any doubt [36] . For Q , if it is rank deficiency, then we

ould always adjust the form of � to let ˆ Q be of full rank. For ex-

mple, if � = [ �1 , �2 , �3 ] , and Q = diag { 0 , σ 2 
1 
, σ 2 

2 
} , then we could

et ˆ � = [ �2 , �3 ] , and 

ˆ Q = diag { σ 2 
1 
, σ 2 

2 
} . After this transformation,

he Q could always be of full rank and invertible. 

. Review of lan et al. (2013) [5] 

Current work is based on Lan et al. [5] and a re-investigation

f the studied problem. In this section, we comprehensively re-

iew the work of Lan et al. (2013). In [5] , the authors first de-

ned the complete-data log-likelihood function L k 
k −l 

based on ob-

ervations { y k −l , y k −l+1 , . . . , y k } and assumed unknown variables

 a k −l , a k −l+1 , . . . , a k } ∪ { b k −l , b k −l+1 , . . . , b k } , in which k is the cur-

ent sampling time and k − l means l steps before from current

ime k . Subsequently, employing EM-based algorithms, Lan et al.

2013) proposed the solution to the LJEIP. 

Obviously, Lan et al. (2013) have studied important problems

nd made significant contributions to the community. The authors,

owever, only gave a practically workable solution and performed

onvicing simulation study by setting some variables to be special

orms. They did not present strong theoretical investigation. For in-

tance, they did not prove the existence and uniqueness of ˆ x , ˆ a and
ˆ 
 . They neither present the proof of the effectiveness and conver-

ence of the EM-based algorithm. Moreover, because of an error
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made in Eq. (25) in [5] , the authors simply viewed �i −1 Q i −1 �
T 
i −1 

as invertible, which is not sufficient and this matrix could actually

be non-invertible. We also point out that the optimal smoother

used to solve a fixed interval smoothing problem could be actu-

ally replaced by the RTS filter and the computational efficiency

can be improved. In the end, we note that there are errors in

mathematical derivation in [5] . As a note, we have fixed them in

Appendix A.1 . 

3. RTS Smoother 

In this section, we introduce the RTS smoother which will be

used to support our linear joint estimation and identification the-

ories. The RTS smoother is an optimal smoother applied in a fixed

interval. In current study, we only present the RTS algorithm and

do not introduce it in detail. We invite interested readers to refer

to Section 9.4 in [36] for more information on this algorithm. 

Theorem 1. [RTS smoother] For a linear Gaussian system defined as

(1) in time interval [1, N ], if { y k | k ∈ {1, 2, ���, N }}, { a k , b k | k ∈ {1, 2, ���,

N }}, x 0 and �0 are uniquely pre-given, then, for any k ∈ {1, 2, ���, N },

the estimate ˆ x k of the system state x k uniquely exist, in the sense of

linear unbiased minimum variance. Besides, the value of ˆ x k is given

by Algorithm 1 . 

Algorithm 1 RTS Smoother. See Ref. [36] is in Algorithm. 

Input: { y k | k ∈ { 1 , 2 , . . . , N}} , { a k , b k | k ∈ { 1 , 2 , . . . , N}} , x 0 and �0 

1: Initialize the forward filter: compute ˆ x f 0 and P 

+ 
f 0 

given by

Eqs. (9.135) in [36] 

2: Execute the forward filter for k = 1 , 2 , 3 , . . . , N: compute

K f k and P 

+ 
fk 

given in Eqs. (9.136) in [36] and 

P 

−
f k 

= F k −1 P 

+ 
f,k −1 

F T k −1 + �k −1 Q k −1 �
T 
k −1 (2) 

ˆ x 

−
f k 

= F k −1 ̂  x 

+ 
f,k −1 

+ M k −1 a k −1 (3) 

ˆ x 

+ 
f k 

= ˆ x 

−
f k 

+ K f k 

(
y k − H k ̂  x 

−
f k 

− N k b k 

)
(4) 

3: Initialize the backward filter: compute ˆ x N and P N given by

Eqs. (9.137) in [36] 

4: Execute the backward filter for k = N − 1 , . . . , 0 : compute all

quantities given by Eqs. (9.138) in [36] 

Output: { ̂ x k | k ∈ { 1 , 2 , · · · , N}} 

Proof. According to the principle of the RTS smoother, it is obvi-

ous. For detail on the RTS smoother, see [36] . �

For the sense of linear unbiased minimum valiance, we detail

in Remark 7 . 

Theorem 2. If { y k | k ∈ { 1 , 2 , . . . , N}} are uniquely pre-given, letting

ρk = [ a k , b k ] 
T , then ˆ x k is continuous in the definition domain of ρk . 

Proof. Theorem 1 and [36] uphold that the mapping from y k , ρk to

ˆ x k is no wonder a function (one-to-one mapping). Thus discussing

the continuity of ˆ x k over ρk is meaningful. Let D d [ ρk ] be the def-

inition domain of ρk . (1) If D d is a continuous set, according to

Theorem 1 and Algorithm 1 , this theorem holds; (2) If D d is a dis-

crete set, we just need to prove that ˆ x k is continuous at every sep-

arate points in the definition domain of ρk , because it is a discrete

set [37] . By the fact that for every ρk ∈ D d and ∀ ε > 0, it is true that

∃ δ > 0 and ∃ ρ ∈ D d , if ‖ ρk − ρ‖ < δ, then 

∥∥ˆ x k ( ρk ) − ˆ x k ( ρ) 
∥∥ < ε.

The fact stands because ρ could always be ρk . Thus according to

the definition of continuity in functional analysis (or in real analy-
sis) [37] , the theorem stands. � p
. Solution to linear joint estimation and identification 

roblem 

For a physical linear system, its states x k and unknown inputs

 k , b k definitely exist (because a k and b k could be always zero if

eed). And our aim is to estimate those unknown variables. From

he viewpoint of statistics, to construct a statistics as an estimate

f a variable, we must depend on enough measures with respect to

t. Therefore, we consider the measure set from time step k − l to

 , where k indicates the current sampling time and k − l means

 steps before from current time k . The LJEIP (1) seems plausi-

le to be solved based on EM-frame, in consideration of that EM-

lgorithm could alternately and simultaneously optimize the esti-

ates of x k , a k , and b k , and give the definite numerical values of

hem. The mechanism of EM algorithm actually is to get the max-

mum likelihood estimate of random variables by alternating opti-

ization in different variables. Thus we should first construct the

ikelihood function for the LJEIP defined in (1) . As a summary, we

ive the motivation of using the EM-based frame as our technique

n Motivation 1 . 

otivation 1. In LJEIP (1) , we actually have two different kinds

f signals (the system states and the unknown inputs) to be esti-

ated. According to the RTS fixed interval smoother, however, if

e have the estimates of unknown inputs, we then could have

n unique estimate to the system state. Thus only the unknown

nputs are the independent underlying variables to the stochastic

ystem (1) . Thus if we treat the unknown inputs as our underly-

ng parameters, the system outputs y i as our observations and the

ystem dynamics (1) as our probability distribution, we then could

se the EM algorithm to maximize the likelihood function (from

he unknown inputs to the outputs) while optimizing (estimating)

he underlying parameters (unknown inputs). 

efinition 1. Let X 

k 
k −l 

= { x k −l , . . . , x k } , Y 

k 
k −l 

= { y k −l , . . . , y k } , A 

k 
k −l 

=
 a k −l , . . . , a k } , B 

k 
k −l 

= { b k −l , . . . , b k } , and ρk 
k −l 

= [ A 

k 
k −l 

, B 

k 
k −l 

] T , re-

pectively. Plus, using ˆ ρk 
k −l 

as an estimate to ρk 
k −l 

and ˆ x i | k −l: k =
[ x i | Y 

k 
k −l 

, ρk 
k −l 

, Y 

k −l−1 
1 

, ρk −l−1 
1 

, x 0 , �0 ] as the conditional expecta-

ion of x i (Obviously, ˆ x i | k −l: k is smoothed result of x i in the interval

 

k − l, k ] ). Together with ˆ x i | k −l: k , let P i, j | k −l: k = cov ( ̂ x i | k −l: k , ̂  x j | k −l: k )

efine its co-variance matrix with ˆ x j | k −l: k . Also, let ˜ x k be the esti-

ate error of x k , that is x k = ̂  x k + ̃  x k . 

To apply the EM-frame, we should firstly define the likelihood

unction and its conditional expectation [38–40] . Obviously, in the

JEIP, observable data set is Y 

k 
k −l 

, which is also referred to as “in-

omplete data”; likewise, unobservable data set is X 

k 
k −l 

, also known

s “complete data” [5,39,40] . 

efinition 2. Let J k 
k −l 

be the incomplete data log-likelihood

unction in discrete time interval [ k − l, k ] , that is J k 
k −l 

=
og p[ Y 

k 
k −l 

| (ρk 
k −l 

, Y 

k −l−1 
1 

, ˆ ρk −l−1 
1 

, x 0 , �0 )] , and T k 
k −l 

be conditional

xpectation of J k 
k −l 

, that is T k 
k −l 

= E ˆ X k 
k −l 

[ J k 
k −l 

( ρk 
k −l 

) | ̂  ρk 
k −l 

, Y 

k 
k −l 

] ; Let

ˆ  k −l−1 = E[ x k −l−1 | (Y 

k −l−1 
1 

, ˆ ρk −l−1 
1 

, x 0 , �0 )] be the conditional esti-

ate of x k −l−1 and P k −l−1 = cov ( x k −l−1 , x k −l−1 ) is its co-variance

atrix. The operator D is defined as D (x , P ) = x T P 

−1 x , and C is

s C (x ) = x x T . E x ( y ) means conditional expectation of y in pres-

nce of x ; Tr ( A ) means calculating the trace of matrix A ; and ‖ x ‖
eans any practically proper types of norm of x , typically the 2-

orm ‖ x ‖ 2 . 

With Definition 1 and Definition 2 , J k 
k −l 

could be further dis-

layed in Eq. (5) . 
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k 
k −l = log 

[ 

p 
[(

X 

k 
k −l 

, Y 

k 
k −l 

)∣∣(ρk 
k −l 

, Y 

k −l−1 
1 

, ˆ ρk −l−1 
1 

, x 0 , �0 

)]
p 
[
X 

k 
k −l 

∣∣Y 

k 
k −l 

, 
(
ρk 

k −l 
, Y 

k −l−1 
1 

, ˆ ρk −l−1 
1 

, x 0 , �0 

)]
] 

= log 
{

p 
[(

X 

k 
k −l , Y 

k 
k −l 

)∣∣(ρk 
k −l , Y 

k −l−1 
1 , ˆ ρk −l−1 

1 , x 0 , �0 

)]}
− log 

{
p 
[
X 

k 
k −l 

∣∣Y 

k 
k −l , 

(
ρk 

k −l , Y 

k −l−1 
1 , ˆ ρk −l−1 

1 , x 0 , �0 

)]}
= : L k k −l − O 

k 
k −l (5) 

here 

 

k 
k −l = log p 

[(
X 

k 
k −l , Y 

k 
k −l 

)∣∣(ρk 
k −l , Y 

k −l−1 
1 , ˆ ρk −l−1 

1 , x 0 , �0 

)]
= log p 

[
x k −l−1 

∣∣(Y 

k −l−1 
1 , ˆ ρk −l−1 

1 , x 0 , �0 

)]
+ 

k ∑ 

i = k −l 

log p 
[
x i | x i −1 , 

(
ρk 

k −l , ̂  x k −l−1 

)]

+ 

k ∑ 

i = k −l 

log p 
[
y i | x i , 

(
ρk 

k −l 

)]
. (6) 

s for O 

k 
k −l 

, its specific pattern should be determined by the

moother we used, like forward-backward smoother or RTS [36] .

owever, it has a common type showed in (7) 

 

k 
k −l = log p 

[
X 

k 
k −l 

∣∣Y 

k 
k −l , 

(
ρk 

k −l , Y 

k −l−1 
1 , ˆ ρk −l−1 

1 , x 0 , �0 

)]
= log p 

[
x k −l−1 

∣∣(Y 

k −l−1 
1 , ˆ ρk −l−1 

1 , x 0 , �0 

)]
+ 

k ∑ 

i = k −l 

log p 
[
x i | x i −1 , 

(
Y 

k 
k −l , ρ

k 
k −l , ̂  x k −l−1 

)]
. (7) 

esides, the conditional expectation T k 
k −l 

of J k 
k −l 

is 

 

k 
k −l 

(
ρk 

k −l 

∣∣ ˆ ρk 
k −l , Y 

k 
k −l 

)
= E ˆ X k 

k −l 

[
J k k −l 

(
ρk 

k −l 

)∣∣( ˆ ρk 
k −l , Y 

k 
k −l 

)]
= E ˆ X k 

k −l 

[
L k k −l 

(
ρk 

k −l 

)∣∣( ˆ ρk 
k −l , Y 

k 
k −l 

)]
−E ˆ X k 

k −l 

[
O 

k 
k −l 

(
ρk 

k −l 

)∣∣( ˆ ρk 
k −l , Y 

k 
k −l 

)]
= : G 

k 
k −l 

(
ρk 

k −l 

∣∣ ˆ ρk 
k −l , Y 

k 
k −l 

)
−H 

k 
k −l 

(
ρk 

k −l 

∣∣ ˆ ρk 
k −l , Y 

k 
k −l 

)
. (8) 

emark 5. For some Linear Gaussian system in engineering, �
hould be of full rank and thus �Q�T should be invertible. How-

ver, for types of special ones, � may be rank deficiency, which

eads to �Q�T is non-invertible. For example, in target tracking

ommunity [8,41] , the noise driven matrix � is like 

= 

[
1 0 

0 1 

]
�

[
T 2 s / 2 

T s 

]
, 

here � refers to the Kronecher product. The � now is with the

imension of 4 by 2, and the covariance matrix Q of q is 2 by

. Obviously, in this case the corresponding matrix �Q�T is rank

eficiency (the rank is 2 rather than 4). For completeness, we

ust discuss the case that � is rank deficiency, which is placed in

ppendix A.3 . In following contexts, for briefness, we mainly dis-

lay the case of that � is of full rank. 

emark 6. Due to the definition of iteration process of EM algo-

ithm is only based on L k 
k −l 

[38–40] , having nothing to do with

 

k 
k −l 

, Lan et al. [5] therefore exclusively paid their attention on L k 
k −l 

ather than J k 
k −l 

, O 

k 
k −l 

and so on. This should be an ambiguity and

asy to misunderstand the readers. Besides, in order to prove the

onvergence and effectiveness, it is necessary to take all of those

tems into consideration. 

After clarifying the necessary definitions and notations, we then

eed to discuss the generation of the EM solution to our LJEIP. We

n Motivation 2 give the general ideas of how to derive the specific

olution, and how to prove its convergence and effectiveness. 
otivation 2. In order to obtain the corresponding EM solution

o the LJEIP, we then need to specify the likelihood function (LLF),

erive its conditional expectation and construct the EM sequence

including Expectation step and Maximum Step) [5,39] . As for the

onvergence and effectiveness proof, the Theorem 2 and Corollary

 in [39] works as long as we can show the continuity of the con-

itional expectation G 

k 
k −l 

of the LLF of the complete-data set, and

he unimodality of the conditional expectation T k 
k −l 

of the LLF of

he incomplete-data set. Thus in Lemma 1 we figure out the condi-

ional expectations of the both complete-data LLF and incomplete-

ata LLF, and in Lemma 2, 3 , and 4 we show the continuity and

nimodality aforementioned. Next, in Lemma 5 and 6 , we dis-

lay why the EM sequence defined in Definition 3 converges to

 global optimal solution for the interested problem. In the end, in

heorem 3 and 4 we make clear why the proposed EM solution

orks for our LJEIP. 

In view of the fact given by Eqs. (9) ∼(12) , 

p 
[
x k −l−1 

∣∣(Y 

k −l−1 
1 , ˆ ρk −l−1 

1 , x 0 , �0 

)]
= N 

(
ˆ x k −l−1 , P k −l−1 

)
(9) 

p 
[
x i | x i −1 , 

(
ρk 

k −l , ̂  x k −l−1 

)]
= N 

(
F i −1 x i −1 + M i −1 a i −1 , �i −1 Q i −1 �

T 
i −1 

)
(10) 

p 
[
y i | x i , 

(
ρk 

k −l 

)]
= N ( H i x i + N i b i , R i ) (11) 

p 
[
x i 

∣∣x i −1 , 
(
Y 

k 
k −l , ρ

k 
k −l , ̂  x k −l−1 

)]
= N 

(
ˆ x i | k −l: k , P i,i | k −l: k 

)
, (12) 

here N (μ, D) means Gaussian distribution with mean μ and

ariance D. For the case that �i −1 Q i −1 �
T 
i −1 

is non-invertible, see

ppendix A.3 . 

Eq. (6) could be further given as 

 

k 
k −l = L k 0 ,k −l + L k 1 ,k −l + L k 2 ,k −l + L k 3 ,k −l , (13)

here 

 

k 
0 ,k −l = −2 n + m + l(m + n ) 

2 

log (2 π) − 1 

2 

log | P k −l−1 | 

−1 

2 

k ∑ 

i = k −l 

(
log 

∣∣�i −1 Q i −1 �
T 
i −1 

∣∣+ log | R i | 
)

(14) 

 

k 
1 ,k −l = −1 

2 

D 

(
x k −l−1 − ˆ x k −l−1 , P k −l−1 

)
(15) 

 

k 
2 ,k −l = −1 

2 

k ∑ 

i = k −l 

D 

(
x i − F i −1 x i −1 − M i −1 a i −1 , �i −1 Q i −1 �

T 
i −1 

)
(16) 

 

k 
3 ,k −l = −1 

2 

k ∑ 

i = k −l 

D ( y i − H i x i − N i b i , R i ) , (17) 

nd Eq. (7) could be rewritten as 

 

k 
k −l = O 

k 
0 ,k −l + O 

k 
1 ,k −l + O 

k 
2 ,k −l , (18)

here 

 

k 
0 ,k −l = −n + n (l + 1) 

2 

log (2 π) − 1 

2 

log | P k −l−1 | 

−1 

2 

k ∑ 

i = k −l 

log 
∣∣P i,i | k −l: k 

∣∣ (19) 

 

k 
1 ,k −l = −1 

2 

D 

(
x k −l−1 − ˆ x k −l−1 , P k −l−1 

)
(20) 
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Fig. 1. Iteration process defined in Theorem 4 . 
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N  
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i
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w  

ρ

P  

X  

t

O 

k 
2 ,k −l = −1 

2 

k ∑ 

i = k −l 

D 

(
x i − ˆ x i,i | k −l: k , P i,i | k −l: k 

)
, (21)

in which the operator D is defined as D (x , P ) = x T P 

−1 x and | A |

means determinant of matrix A . For the case that �i −1 Q i −1 �
T 
i −1 

is

non-invertible, see Appendix A.3 . 

Lemma 1. The conditional expectation G 

k 
k −l 

of L k 
k −l 

regarding LJEIP

(1) is given as 

G 

k 
k −l = E ˆ X k 

k −l 

[
L k k −l 

(
ρk 

k −l 

)∣∣(Y 

k 
k −l , ˆ ρk 

k −l , ̂  x k −l−1 

)]
= G 

k 
0 ,k −l + G 

k 
1 ,k −l + G 

k 
2 ,k −l + G 

k 
3 ,k −l , 

(22)

where 

G 

k 
0 ,k −l = L k 0 ,k −l (23)

G 

k 
1 ,k −l = −n 

2 

, (24)

G 

k 
2 ,k −l = −1 

2 

T r 

{ 

k ∑ 

i = k −l 

[
�i −1 Q i −1 �

T 
i −1 

]−1 

·
[

C ( ̂  x i | k −l: k − F i −1 ̂  x i −1 | k −l: k − M i −1 a i −1 ) + P i,i | k −l: k 

− P i,i −1 | k −l: k F 
T 
i −1 − F i −1 P i −1 ,i | k −l: k + F i −1 P i −1 ,i −1 | k −l: k F 

T 
i −1 

]}
(25)

G k 3 ,k −l = − 1 

2 
T r 

{ 

k ∑ 

i = k −l 

R −1 
i 

·
[

C 
(
y i − H i ̂ x i | k −l: k − N i b i 

)
− H i P i,i | k −l: k H 

T 
i 

]} 

(26)

and the conditional expectation H 

k 
k −l 

of O 

k 
k −l 

is as 

H 

k 
k −l = E ˆ X k 

k −l 

[
O 

k 
k −l 

(
ρk 

k −l 

)∣∣(Y 

k 
k −l , ˆ ρk 

k −l , ̂  x k −l−1 

)]
= H 

k 
0 ,k −l + H 

k 
1 ,k −l + H 

k 
2 ,k −l , 

(27)

where 

H 

k 
0 ,k −l = O 

k 
0 ,k −l (28)

H 

k 
1 ,k −l = −n 

2 

(29)

H 

k 
2 ,k −l = −n (l + 1) 

2 

, (30)

and the operator C is defined as C (x ) = x x T . For the case that

�i −1 Q i −1 �
T 
i −1 

is non-invertible, see Appendix A.3 . 

Proof. See Appendix A.2 . �

To apply EM frame, we now discuss the properties of G 

k 
k −l 

. Be-

low are conclusions. 

Lemma 2. G 

k 
k −l 

is continuous over the definition domains of both

ˆ ρk 
k −l 

and ρk 
k −l 

. 

Proof. No wonder, G 

k 
k −l 

is continuous to ˆ x i | k −l: k and ρk 
k −l 

, because

the definition of G 

k 
k −l 

is basic. Besides, according to Theorem 2 ,

ˆ x i | k −l: k is continuous to ˆ ρk 
k −l 

, thus in consideration of theory of

functional analysis (or real analysis) [37] , G 

k 
k −l 

is continuous to

ˆ ρk 
k −l 

. Therefore, the lemma stands. �

Lemma 3. G 

k 
k −l 

is a concave function on the definition domain of

ρk 
k −l 

= [ a k 
k −l 

, b 

k 
k −l 

] T , and the peak is reached at its unique stationary

point (meaning local maximum here), if M i , N i are all of full column

rank. 
roof. The Hessian matrix of G 

k 
k −l 

on ρk 
k −l 

is 

∂ 2 G 

k 
k −l 

∂ 
(
ρk 

k −l 

)
∂ 
(
ρk 

k −l 

)T 
= H hes = 

[
H 1 0 

0 H 2 

]
, (31)

here 

 1 = diag 

{ 

−M 

T 
i −1 ·

[
�i −1 Q i −1 �

T 
i −1 

]−1 · M i −1 

} 

i = k −l, ... ,k 
(32)

 2 = diag 
{
−N 

T 
i · R 

−1 
i 

· N i 

}
i = k −l, ... ,k 

. (33)

t is obvious that both H 1 and H 2 are negative definite. Thus

 hes is negative definite. Besides 

∂G 

k 
k −l 

∂ρk 
k −l 

= 

[
D 1 

D 2 

]
(34)

here D 1 and D 2 are given by Eqs. (35) and (36) . 

 1 = col 

{ 

M 

T 
i −1 ·

[
�i −1 Q i −1 �

T 
i −1 

]−1 

·
(

ˆ x i | k −l: k − F i −1 ̂  x i −1 | k −l: k − M i −1 a i −1 

)}
i = k −l, ... ,k 

(35)

 2 = col 
{

N 

T 
i · R 

−1 
i 

·
(
y i − H i ̂  x i | k −l: k − N i b i 

)}
i = k −l, ... ,k 

(36)

In consideration of that M i , N i are all of full column

ank, that is, the matrices defined by 
{

N 

T 
i 

· R 

−1 
i 

· N i 

}
and

 

M 

T 
i −1 

·
[
�i −1 Q i −1 �

T 
i −1 

]−1 · M i −1 

} 
are all positive definite and thus

nvertible, the lemma stands. For the case that �i −1 Q i −1 �
T 
i −1 

is

on-invertible, see Appendix A.3 . �

emma 4. T k 
k −l 

is a concave function and the unique point reaching

ts peak T ∗ is same with the point reaching the peak of G 

k 
k −l 

, if M i ,

 i are all of full column rank. As for the point ρ∗ reaching the peak

entioned above, it is given by (37) . For the case that �i −1 Q i −1 �
T 
i −1 

s non-invertible, see Appendix A.3 . 

a ∗
i −1 

= A 

−1 · M 

T 
i −1 

·
[
�i −1 Q i −1 �

T 
i −1 

]−1 ·
(

ˆ x i | k −l: k − F i −1 ̂  x i −1 | k −l: k 

)
b 

∗
i 

= B 

−1 · N 

T 
i 

· R 

−1 
i 

·
(
y i − H i ̂  x i | k −l: k 

)
, 

(37)

here A = 

{ 
M 

T 
i −1 

·
[
�i −1 Q i −1 �

T 
i −1 

]−1 · M i −1 

} 
, B = 

{
N 

T 
i 

· R 

−1 
i 

· N i 

}
,

i 
∗ = 

[
a ∗

i −1 
, b 

∗
i 

]T 
and k − l ≤ i ≤ k . 

roof. In consideration of that if ˆ ρk 
k −l 

and Y 

k 
k −l 

are pre-given, then

 

k 
k −l 

would be determined by RTS Smoother. Thus H 

k 
k −l 

has nothing

o do with ρk 
k −l 

. Specifically, see Eqs. (28) ∼(30) . That means 



S. Wang, C. Li and A. Lim / Signal Processing 161 (2019) 268–288 273 

Fig. 2. The unknown inputs in system model and measurement model. 

Fig. 3. Real and measured position in x axis and y axis. 
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e  
∂ 2 G 

k 
k −l 

∂ 
(
ρk 

k −l 

)
∂ 
(
ρk 

k −l 

)T 
= 

[
H 1 0 

0 H 2 

]
= 

∂ 2 T k 
k −l 

∂ 
(
ρk 

k −l 

)
∂ 
(
ρk 

k −l 

)T 
(38) 

∂G 

k 
k −l 

∂ρk 
k −l 

= 

[
D 1 

D 2 

]
= 

∂T k 
k −l 

∂ρk 
k −l 

, (39) 

nd 

{ 
M 

T 
i −1 

·
[
�i −1 Q i −1 �

T 
i −1 

]−1 · M i −1 

} 
, 
{

N 

T 
i 

· R 

−1 
i 

· N i 

}
are all invert- 

ble, if further we let D 1 = 0 and D 2 = 0 , the lemma stands. �

efinition 3. Let r = 0 , 1 , 2 , 3 , . . . be the index of the array { ̂  ρr } :=
 ̂  ρk 

k −l 
(r) } . The element ˆ ρk 

k −l 
(r) | r> 0 of the array is recursively de-

ned as 

ˆ k k −l (r + 1) = arg max 
ρk 

k −l 

G 

k 
k −l ( ρ

k 
k −l | Y 

k 
k −l , ˆ ρk 

k −l (r) ) 

= arg max 
ρk 

k −l 

E ˆ X k 
k −l 

[ L k k −l ( ρ
k 
k −l ) | ( Y 

k 
k −l , ˆ ρk 

k −l (r) ) ] , (40) 

ith the initial value ˆ ρk 
k −l 

(0) = ˆ ρ0 ( 
∥∥ ˆ ρ0 

∥∥ < ∞ ). 

The Eq. (40) in Definition 3 actually gives Maximum step in EM

rame, meaning obtaining the maxima of the conditional expecta-

ion of the complete-data set likelihood function G 

k 
k −l 

. Correspond-

ngly, Lemma 1 , which calculates G 

k 
k −l 

, gives the Expectation step

n EM frame. For the detailed concepts of Expectation step and

aximum step of EM frame, see [5,38–40] . 

emma 5. For any instance of the array { ̂  ρr } := { ̂  ρk 
k −l 

(r) } defined in

efinition 3 , the inequalities 

 

k 
k −l 

(
ˆ ρk 

k −l (r + 1) 
)

≥ T k k −l 

(
ˆ ρk 

k −l (r) 
)

(41) 
nd 

 

k 
k −l 

(
ˆ ρk 

k −l (r + 1) 
)

≤ H 

k 
k −l 

(
ˆ ρk 

k −l (r) 
)

(42) 

lways hold. 

roof. See [39,40] . �

emma 6. If G 

k 
k −l 

is continuous over both ˆ ρk 
k −l 

and ρk 
k −l 

, then all

he limit points of any instance of the array { ̂  ρr } = { ̂  ρk 
k −l 

(r) } de-

ned in Definition 3 are stationary points (local maxima) of T k 
k −l 

,

nd T k 
k −l 

(
ˆ ρk 

k −l 
(r) 

)
converges monotonically to its peaks T ∗ = T ( ρ∗)

or some stationary points ρ∗. Further, if T k 
k −l 

(
ρk 

k −l 

)
is unimodal, then

ˆ k 
k −l 

(r) → ρ∗. 

roof. According to Lemma 2, Lemma 4 (Concave is sufficient to

nimodal), Lemma 5 , Theorem 2 and Corollary 1 in [39] , this lemma

olds. �

.1. Existence and uniqueness of solution to LJEIP 

In this section, we prove the existence and uniqueness of the

olution to the LJEIP. 

heorem 3. For the LJEIP defined by (1) , if the system measures

 i , i = 1 , 2 , 3 , . . . N are uniquely pre-given, and the input-driving ma-

rices M i , N i are all of full column rank, then the solutions to LJEIP,

hat is, ˆ x i , ˆ a i and ˆ b i , uniquely exist, with the initial conditions x 0 , �0 

nd arbitrarily given norm-finite ˆ ρ0 ( 
∥∥ ˆ ρ0 

∥∥ < ∞ ), in the sense of lin-

ar unbiased minimum variance, no matter whether �i −1 Q i −1 �
T 
i −1 

is
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Fig. 4. The tracking results given by the IMM method. 
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Fig. 5. The model probability and target manoeuvre identification results of the IMM method. 
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a  
nvertible (that is, whether 	i −1 is of full rank) or not. Here ˆ x i , ˆ a i and
ˆ 
 i is the estimates of x i , a i and b i , respectively. 

roof. To be identical with the definitions given in previous sec-

ions, let k − l = 1 and k = N, if we using Definition 3 to gen-

rate a sequence ˆ ρk 
k −l 

(r) , then according to Lemma 6 , ˆ x i , ˆ a i 

nd 

ˆ b i uniquely exists, and ˆ a i , ˆ b i are given by ρ∗ = [ a ∗, b 

∗] 
T 

.

lso, according to Theorem 1 , ˆ x i is uniquely determined by RTS

moother within [ k − l, k ] ( Algorithm 1 ). In summary, the theorem

tands. �

.2. Linear joint estimation and identification theorem (LJEIT) 

heorem 4. For Linear Joint Estimation and Identification Problem

LJEIP) defined by (1) , if the system measures y i , i = 1 , 2 , 3 , . . . N are

niquely pre-given, and the input-driving matrices M i , N i are all of

ull column rank, then the solutions to LJEIP, that is, ˆ x i , ˆ a i and ˆ b i ,

niquely exist, in the sense of linear unbiased minimum variance, no

atter whether �i −1 Q i −1 �
T 
i −1 

is invertible (namely, whether 	i −1 is

f full rank) or not. Plus, the numerical values of ˆ x i , ˆ a i and ˆ b i could

e given by a iteratively convergent process (43) and (44) (see also

ig. 1 ): 

ˆ  i ( r ) = RTS 
({ y i } | i =1 , 2 ,.,N , x 0 , �0 , ˆ ρ( r ) 

)
(43) 

 

 

 

 

 

 

 

ˆ a i −1 ( r + 1 ) = A 

−1 · M 

T 
i −1 

·
[
�i −1 Q i −1 �

T 
i −1 

]−1 

·
[

ˆ x i ( r ) − F i −1 ̂  x i −1 ( r ) 
]

ˆ b i ( r + 1 ) = B 

−1 · N 

T 
i 

· R 

−1 
i 

·
[
y i − H i ̂  x i ( r ) 

]
, 

(44) 
here A = 

{ 
M 

T 
i −1 

·
[
�i −1 Q i −1 �

T 
i −1 

]−1 · M i −1 

} 
, B = 

{
N 

T 
i 

· R 

−1 
i 

· N i 

}
,

 = 1 , 2 , . . . , N, with the initial conditions x 0 , �0 and arbitrarily given

orm-finite ˆ ρ0 ( 
∥∥ ˆ ρ0 

∥∥ < ∞ ). 

That is, if r → ∞ , then 
 

 

 

 

 

ˆ x i ( r ) → ˆ x i 

ˆ a i ( r ) → ˆ a i 

ˆ b i ( r ) → 

ˆ b i . 

(45) 

n Eqs. (43) ∼(45) , r = 1 , 2 , 3 , . . . indicates the r th iteration, and

he function RTS means executing the RTS smoother defined by

lgorithm 1 . For the case that �i −1 Q i −1 �
T 
i −1 

is non-invertible, see

ppendix A.3 . 

roof. According to Lemma 4 and Theorem 3 , the theorem

tands. �

emark 7. To stress that Theorem 3 and Theorem 4 stand in the

ense of linear unbiased minimum variance is because the RTS

moother works in the sense of linear unbiased minimum vari-

nce. Generally, an estimate of x i , denoted by ˆ x i , is said to be opti-

al in the minimum mean square error (MMSE) sense, if ˆ x i mini-

izes E[ ‖ x i − ˆ x i ‖ 2 ] . Since the unknown input a i −1 and b i are deter-

inistic, not random variables, the estimates to them, ˆ a i −1 and 

ˆ b i ,

hould be dependent on the properties of ˆ x i . Specifically, according

o Eq. (44) , the estimates to a i −1 and b i are also given in the sense

f linear unbiased minimum variance, with mean of ˆ a i −1 and 

ˆ b i ,

espectively. 

The diagram of iteration process defined in Theorem 4 is illus-

rated in Fig. 1 . 

For a real system in engineering, the measures { y i | i = 1 , 2 , . . . }
re always got in sequence in accordance with time step, that is,
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Fig. 6. The tracking results given by the LJEIT proposed in this paper. 
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Algorithm 2 The algorithm of solving the LJEIP in sequence. See Remark 9 and Eqs. (43) and (44) is in Algorithm. 

Definition : r max is maximum iteration steps; δL is desired precision to, if reached, end the iteration process; δρ is threshold to decide 

whether ˆ ρ should be zero. 

Initialize : r ← 0 , k ← 0 , ˆ ρ0 ← 0 

Input: x 0 , �0 , r max , δL , δρ , l and y k , k = 1 , 2 , 3 , . . . 

1: while true do 

2: k ← k + 1 

3: if k ≤ l then 

4: Continue While 

5: end if 

6: ˆ ρ( 0 ) ← ˆ ρ0 

7: r ← 0 

8: repeat 

9: The iteration process (43) and (44) 

10: r ← r + 1 

11: until r > r max or 
∥∥ ˆ ρi ( r + 1 ) − ˆ ρi ( r ) 

∥∥ < δL 

12: // To check if the unknown input is zero or not 

13: for each ρ in ˆ ρ( r + 1 ) 
∣∣

k −l≤i ≤k do 

14: if ρ < δρ then 

15: ρ ← 0 

16: end if 

17: end for 

18: // To accelerate the iteration process, use parts of the ˆ ρk −1 
k −l−1 

as initial conditions. See Remark 9. 

19: 

ˆ ρ0 ← [ ̂  ρ( r + 1 ) | k −l−1 ≤i ≤k −1 { 2 : l + 1 } , ˆ ρ( r + 1 ) | k −l−1 ≤i ≤k −1 { l + 1 } ] (46) 

20: // Note that k here actually means the (k + 1) th iteration. Because in the beginning of “While” statement, we have k ← k + 1 . 

21: Record: ˆ x k , ˆ a k , ˆ b k 

22: if end of getting y k then 

23: Break While 

24: end if 

25: end while 

Output: { ( ̂ x k , ̂  a k , ̂  b k ) | k = 1 , 2 , 3 , . . . , } 

{  
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y 1 , y 2 , y 3 , . . . } , instead of in block. Thus we provide Algorithm 2 to

olve the LJEIP. 

emark 8. In Algorithm 2 two practical skills are used: (a) Use

 threshold to set the estimates of some unknown inputs to

ero. Because due to the existence of noise, even though there is

o unknown input (that is ρ ≡ 0 ), ˆ ρ would not always be zero

5] ; (b) Use the estimated ˆ ρ in time interval [ k − l − 1 , k − 1 ]

s parts of the initial conditions to execute iteration process

n time interval [ k − l, k ] . In detail, ˆ ρ0 in time interval [ k − l, k ]

s constructed as ˆ ρ0 

∣∣
[ k −l,k ] = [ ˆ ρpre { 2 : l + 1 } , ˆ ρpre { l + 1 } ] ,

here ˆ ρpre means the estimate to ρ in time interval

 

k − l − 1 , k − 1 ] , { 2 : l + 1 } means extract the columns from

olumn 2 to column l + 1 , and { l + 1 } means the last col-

mn. We can also construct the initial value ˆ ρ0 by ˆ ρ0 

∣∣
[ k −l,k ] =

 ˆ ρpre { l + 1 } ˆ ρpre { l + 1 } , . . . , ˆ ρpre { l + 1 } ˆ ρpre { l + 1 } ] , just 

s Lan et al. does in [5] . 

emark 9. For Algorithm 2 , another one important trick in prac-

ice is that we can let the estimates to the unknown inputs keeps

onstant within [ k − l, k ] , meaning taking the average of all the

stimates at different steps within this window so that we can

eaken the negative influences introduced by noises, just as Lan

t al. does in [5,8] . We in the simulation of this paper also use this

rick. 

. Simulation experiments and results analysis 

In Lan et al. [5] , the authors demonstrated the simulation of

racking a manoeuvring target in the presence of the RGPO (range

ate pull-off). In the experiment, the target manoeuvre exists as
nknown input in system dynamics model and the RGPO as un-

nown input in measurement model. The experiment results il-

ustrated the proposed method could simultaneously estimate the

ystem states (position and velocity of the target) and identify the

nknown inputs both in the system model and the measurement

odel. Notably, it is the identifications of unknown inputs that im-

rove the estimate accuracy of the system states. Overall, the pro-

osed method outperformed the canonical Interactive Multi-model

IMM) method, because IMM is powerless for the unknown inputs

ppearing in measurement model. As a corroboration to [5] , we

n this paper consider another scenario of tracking a manoeuvring

arget. The simulation is based on a desktop having the following

onfigurations: 

• Operation System: Windows 10 Education; 
• CPU: Intel Core i7 3.2GHz x64; 
• RAM: 8G. 

.1. Simulation scenario and problem formulation 

The scenario in this paper is with following conditions: 

• The simulation evolves in total t max = 40 s, with the sampling

time T s = 0 . 1 s . Thus the discrete time span is 0 ≤ k ≤ 400; 
• The target moves in the ground (a 2D-plane with x axis and y

axis) with a constant velocity. Its initial position is [0, 0] T m and

initial velocity is [5 , −5] T m/s . However, during the time slot

60 ≤ k ≤ 100 (6 ≤ t ≤ 10), it manoeuvres in the x axis with the

acceleration of 10 m / s 2 ; 
• The ranging radar system (the sensor) could directly obtain the

position of a mobile target. However, there exist radar biases in
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Fig. 7. The unknown inputs identification results of the LJEIT. 

 

 

 

measures because of the sensor faults, electronic countermea-

sures, initial position configuration errors, and/or radar self-

localization errors. Mathematically, in our simulation the radar
biases are given as 

B x = A 0 + Asin (0 . 01 t) 

B y = A 0 + Acos (0 . 01 t) 
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Fig. 8. The tracking results given by the LJEIT when l = 1 . 

 

 

 

 

p  

w  
where t denotes the time in seconds; B x is radar bias in x axis

and B y is radar bias in y axis. The constants A 0 = 250m and

A = 20m . The measurement noise is 1 m in both x and y axis,
that is, the covariance matrix in (1) is R k +1 = diag{ 1 , 1 } . t  

f  
Obviously in our simulation, the system states x k are real-time

osition and velocity of the target. The manoeuvre (acceleration

ithin 60 ≤ k ≤ 100) is the unknown input a k in system model and

he radar bias is unknown input b k in measurement model. Hence-

orth, in the following we should estimate the position and velocity
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Fig. 9. The tracking results given by the LJEIT when l = 5 (Part I). 
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f  
of the target and identify the unknown inputs both in the system

model and measurement model. The unknown inputs in the sys-

tem model and measurement model is graphically given in Fig. 2 . 

As a result, we have the real position and measured position in

x axis and y axis in Fig. 3 , respectively. 

From Fig. 3 , we can find that the sensor biases and target ma-

noeuvre introduce the significant influences to target tracking and

target trajectory. Although canonical filters of Kalman family, in-

cluding the IMM method, could to some extent handle the prob-

lem caused by target manoeuvre, they could do nothing to sensor

bias so that the estimate error could be intolerable. Thus in order

to further improve the tracking accuracy, we must identify the un-

known inputs. This is why our story comes. In Subsection 5.2 , we

firstly display the tracking results given by the IMM method, just

as an intuitive understanding to the insufficiency of canonical fil-

ters, and in Subsection 5.3 we show the tracking results given by

our Algorithm 2 , namely the LJEIT ( Theorem 4 ) in this paper. 

5.2. Tracking results by the IMM method 

We consider three different tacking models in this part, con-

stant velocity model (CV), constant acceleration model (CA) and

Singer model (Singer). The mathematical expressions of the three

models could be found in [41] . For briefness, we omit them

here. In the Singer model, we set the key parameter (the re-

ciprocal of the maneuver time constant τ ) as α = 1 / 20 , as sug-

gested in [42] . Additionally, the initial model probability vector is

[ CV, CA, Singer] T = [0 . 35 , 0 . 35 , 0 . 3] T , and the model probability

transition matrix is 

P i j = 

[ 

0 . 9 0 . 05 0 . 05 

0 . 05 0 . 9 0 . 05 

0 . 05 0 . 05 0 . 9 

] 

. 

The initial system state x 0 is set as x 0 = 0 6 ×1 , meaning a

6-dimension vector having all elements of zero; the initial co-

variance �0 = I 6 ×6 × 10 5 , meaning a 6-dimension identical matrix

multiplied by a large number. 
With all simulation conditions aforementioned, the tracking re-

ults by the IMM method are illustrated in Fig. 4 . 

Besides, we have the model probability through the time, and

anoeuvre (unknown input in system model) identification results

n Fig. 5 . From Fig. 5 , we can see that the IMM method could iden-

ify the target manoeuvre to some degree, that is, the unknown

nput in system model. Because the CA model stands out during

 s ≤ t ≤ 10 s (60 ≤ k ≤ 100). However, it can do nothing to sensor er-

ors. Thus, Fig. 4 presents the significant position estimate error. 

.3. Tracking results by the LJEIT in this paper 

In this part, we use Algorithm 2 presented in this paper to es-

imate the system state and identify the unknown inputs. The sys-

em model F k we use in (1) is the CV model [41] , that is 

 k = 

⎡ 

⎢ ⎣ 

1 T s 0 0 

0 1 0 0 

0 0 1 T s 
0 0 0 1 

⎤ 

⎥ ⎦ 

. 

Thus we have the modelling error because we do not take the

nknown input, existed as acceleration, into our consideration of

odelling. However, we could instead model the unknown acceler-

tion as unknown input a k which is driven by input-driven matrix

 k , where 

 k = 

⎡ 

⎢ ⎣ 

T s 0 

1 0 

0 T s 
0 1 

⎤ 

⎥ ⎦ 

. 

Besides, we should have the measurement model 

 k = 

[
1 0 0 0 

0 0 1 0 

]
. 

Similarly, the measurement model is also insufficient because it

ailed to explain the radar biases. Therefore we model the radar
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Fig. 10. The tracking results given by the LJEIT when l = 5 (Part II). 

b  

m

 

0  

t  

i  

c  

m

iases as unknown input b k in measurement model driven by the

atrix N k = I 2 ×2 . 

Plus, we give the initial settings: the initial system state x 0 =
 4 ×1 , meaning a 4-dimension vector having all elements of zero;
he initial co-variance as �0 = I 4 ×4 × 10 5 , meaning a 4-dimension

dentical matrix multiplied by a large number. The process noise

ovariance is Q k = diag{ 1 , 0 . 2 , 1 , 0 . 2 } (cm), and the noise driven

atrix is �k = I 4 ×4 ; the R k is given in Subsection 5.1 . 
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Fig. 11. Estimate radar biases regardless of manoeuvring acceleration. 
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As a demonstration, we set our parameters in Algorithm 2 as

r max = 45 , δL = 10 −3 , δρ = 10 −4 , l = 3 . Then the tracking results

are illustrated in Fig. 6 . 

In addition, we have the manoeuvre (unknown input in system

model) and radar biases (unknown input in measurement model)

identification results in Fig. 7 . In Fig. 7 , (a), (b), (g) and (h) are gen-

erated by the LJEIT. And (c) and (d) are produced by the first-order

exponential smoothing (ES) from (a) and (b), respectively, with the

filter coefficient α = 0 . 07 . We use the ES to weaken the influence

of noises, in order to make interested signals outstanding so that it

is easy for us to identify signals by eyes. Alternatively, we do other

100 times of Monte Carlo simulations and average the estimates to

the manoeuvre (Avg), which gives (e) and (f). 

As a comparison, we set the window length l = 1 and l = 5 . We

in turn have the tracking results showed in Figs. 8–10 . For better

typesetting layout, we split the results of l = 5 into two parts,

placed in Fig. 9 (Part I) and Fig. 10 (Part II), respectively. 

In order to testify the mutual dependence between estimating

manoeuvring acceleration (unknown input in the system model)

and estimating radar biases (unknown input in the measurement

v  
odel), we do not consider the estimate to the manoeuvre in

he scenario of l = 3 and r max = 45 , meaning the estimation to

he manoeuvring acceleration is always set as zero. Then we have

ig. 11 . 

.4. Results analysis 

From Figs. 6 and 7 . We can see the position estimate of the

JEIT significantly outperforms that of the IMM. Besides, in the x

xis and during the target manoeuvring period, the velocity esti-

ate error of the LJEIT is also notably small than that of the IMM.

Additionally, Figs. 8–10 indicate that different window length

eans different tracking performance. It is obvious that l = 1 is not

ufficient to our problem and it can only tell apart the main trend

f the changing laws of position, velocity, and unknown inputs. l =
 and l = 5 are comparatively more suitable. 

Besides, we can find in Fig. 11 that the algorithm no longer

onverges (or maybe it converges within an extremely long time

pan). This indicates that actually the estimation to the manoeu-

ring acceleration is not independent of the estimation to the radar
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Fig. 12. The computational burden of the algorithm with different parameters. 
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interests. 
iases, meaning the identification of unknown inputs are highly

oupled, no matter the inputs are in the system model, in the mea-

urement model or in both. This phenomena is not confusing since

he LJEIT requires the conjunct participation of the system states

nd all of the unknown inputs. 

Unsurprisingly, the identification error still also exits in our

ethod. This is dominantly because the algorithm has limited iter-

tion steps ( r max = 45 ), which leads to the truncation error. How-

ver this is unavoidable in practice. As long as the accuracy of the

esults is feasible, the less of the maximum iteration steps, the bet-

er the result is. 

.5. Computational burden of LJEIT 

Although the proposed LJEIT performs well, as a numerical al-

orithm, we must concern its computational efficiency, since we

nly accept the real-time methods in engineering at least in the

ignal processing community. The real-time algorithm means an

lgorithm that could return a feasible solution to the problem

ithin a limited time slot like 0.02s, 0.1s or 1s. Now that the

ampling time in this paper is T s = 0 . 1 s . The real-time accordingly

eans the LJEIT could estimate the system states and identify the

nknown inputs at each step k within 0.1 s . Obviously in our algo-

ithm, the window length l and the maximum iteration steps r max 

ominate the main part of the running time. We give the typical

esting results of our algorithm in Fig. 12 . In Fig. 12 , all the used

arameters combination are verified to be efficient to generate a

easible solution. For briefness, we neglect the solutions they gave,

nly providing the computation performances. 

From Fig. 12 , we can see that even if the maximum iteration

tep is set as r max = 200 , or window length as l = 5 , all the com-

utations are meaningful since they all terminated within T s =
 . 1 s . In practice, at some steps the algorithm may not terminate

ithin the limited time slot T s , for example, the case of l = 5 in

ig. 12 (b). What we should do is just to mandatorily stop its exe-

ution and return the current truncated solution. In a long run, as

ong as the number of these kinds of mandatory stop is small, it

ould not create disaster. 

. Conclusion and future work 

In this paper, we study the important LJEIP and extend Lan

t al. [5] by providing strong theoretical results. They mainly in-

lude the existence and uniqueness proof for solutions of the LJEIP,

nd effectiveness and convergence proof for the EM-based algo-

ithm generated by the LJEIT. Simulation results validates the ef-

ectiveness and efficiency of our method detailed in Theorem 4 and
lgorithm 2 . Although powerful in many senses, our algorithm still

aces several challenges which deserve further study as follows. 

• During designing our simulation experiments, we found that,

different input-driven matrix ( M k and/or N k ) means different

computational performance in generating the solution, for ex-

ample the average running time at each step, and truncation

error (algorithm accuracy) when given the fixed maximum it-

eration steps, and so on. Thus the first open problem is to dis-

cover the pattern of how the selected input-driven matrix in-

fluence the algorithm performances and which family of input-

driven matrices could optimize the algorithm efficiency under

the fixed parameters ( l , r max etc.); 
• Figs. 6–10 indicate that in order to improve the effectiveness of

the solution, the window length should be sufficient. However,

it does not mean that, the longer the window length is, the

better the result is. Instead, it possibly introduces extra com-

putational burden. Thus, the second open problem is to find

out, under the given maximum iteration steps , what the best

(or feasible) window length should be. Because, in Theorem 4 ,

we do not take into account the specific window length, just

asserting the convergence when the iteration number at each

step tends to infinity; 
• The third open problem is, besides the deterministic signals as

the unknown inputs assumed in Assumption 1 , which classes

of unknown signals the proposed method can handle, and what

are the corresponding solutions to them. Because the underly-

ing philosophy of the EM method is essentially the maximum

likelihood estimation. In theory, as long as we can find the cor-

responding exact/approximated probability distribution of inter- 

ested joint and marginal distributions [38,40] , we can carry out

the EM method to construct the numerical solution. 

Hence here, we invite interested readers in the community to

tudy the above open problems. 
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5] in the following Table A1 . In this Table, the first column is the error 

ber in Lan et al. [5] ; and the last column is the correct equation no in 

ections in this paper. 

[5] Corrections in this paper 

Eq. (47) 

Eq. (48) 

Eq. (49) 

Eq. (50) 

Eq. (51) 

Eq. (52) 

Eq. (53) 

= log p( x k −l−1 

∣∣ ˆ ρk −l−1 
1 , Y 

k −l−1 
1 , x 0 , �0 ) 

(47) 

∣∣+ log | R i | 
)
, (48) 

 in [5] . 

(49) 

 

− M i −1 a i −1 

)
 | k −l: k F 

T 
i −1 

]}
(50) 

]} 

(51) 

(52) 

(53) 

e several other important errors in Lan et al. [5] . 

e operator of matrices. As a result, Eqs. (14) to (17) are neither right in 

Eq. (32) of Lan et al. [5] holds if and only if there is a premise that a i −1 

33) in [5] . And corrected equations are (54) and (55) in current paper, 

 i −1 

)
(54) 

(55) 
Appendix A 

A1. Errors in Lan et al. [5] 

In this section, we list and fix some minor errors in Lan et al. [

sequence number; the second column list the error equation num

current paper. 

Table A1 

Minor Errors in [5] and Corr

No. Error equations in 

1 Eq. (2) 

2 Eq. (4) 

3 Eq. (6) 

4 Eq. (10) 

5 Eq. (11) 

6 Eq. (24) 

7 Eq. (25) 

L k k −l = log p( x k −l , . . . , x k , y k −l , . . . , y k 
∣∣ρk 

k −l , ˆ ρk −l−1 
1 , Y 

k −l−1 
1 , x 0 , �0 ) 

+ 

k ∑ 

i = k −l 

log p( x i | x i −1 , ρ
k 
k −l , ̂  x k −l−1 ) + 

k ∑ 

i = k −l 

log p( y i | x i , ρ
k 
k −l ) , 

where log is natural logarithmic function. 

L k 0 ,k −l = −n + (l + 1)(m + n ) 

2 

log (2 π) − 1 

2 

k ∑ 

i = k −l 

(
log 

∣∣�i −1 Q i −1 �
T 
i −1 

where | A | means determinant of matrix A , which is left unspecified

L k 2 ,k −l = −1 

2 

k ∑ 

i = k −l 

D 

(
x i − F i −1 x i −1 − M i −1 a i −1 , �i −1 Q i −1 �

T 
i −1 

)

G 

k 
2 ,k −l = −1 

2 

T r 

{ 

k ∑ 

i = k −l 

[
�i −1 Q i −1 �

T 
i −1 

]−1 ·
[
C 
(

ˆ x i | k −l: k − F i −1 ̂  x i −1 | k −l: k

+ P i,i | k −l: k − P i,i −1 | k −l: k F 
T 
i −1 − F i −1 P i −1 ,i | k −l: k + F i −1 P i −1 ,i −1

Eq. (29) in Lan et al. [5] should be fixed similarly. 

G 

k 
3 ,k −l = −1 

2 

T r 

{ 

k ∑ 

i = k −l 

R 

−1 
i 

·
[
C 
(
y i − H i ̂  x i | k −l: k − N i b i 

)
− H i P i,i | k −l: k H 

T 
i 

Eq. (31) in Lan et al. [5] should be fixed similarly. 

p( x k −l−1 

∣∣Y 

k −l−1 
1 , ˆ ρk −l−1 

1 , x 0 , �0 ) = N ( ̂  x k −l−1 , P k −l−1 ) 

p( x i 

∣∣x i −1 , ρ
k 
k −l , ̂  x k −l−1 ) = N ( F i −1 x i −1 + M i −1 a i −1 , �i −1 Q i −1 �

T 
i −1 ) 

Besides those minor errors listed in the above Table A.1 , we not

Eqs. (32) and (33) in [5] are wrong by the definition of derivativ

[5] which were derived from Eqs. (32) and (33). We also note that 

remains invariant in time interval [ k − l, k ] . We fix Eqs. (32) and (

respectively. 

∂G 

k 
k −l 

∂ a i −1 

= M 

T 
i −1 ·

[
�i −1 Q i −1 �

T 
i −1 

]−1 ·
(

ˆ x i | k −l: k − F i −1 ̂  x i −1 | k −l: k − M i −1 a

∂G 

k 
k −l 

∂ b i 

= N 

T 
i · R 

−1 
i 

·
(
y i − H i ̂  x i | k −l: k − N i b i 

)



S. Wang, C. Li and A. Lim / Signal Processing 161 (2019) 268–288 285 

A

L (56) 

G
l 
, given in (57), (58) , and (59) , respectively. 

G ]}
= −1 

2 

T r { I n ×n } = −n 

2 

(57) 

(P 

−1 ˜ x ̃ x T ) = T r(P 

−1 C ( ̃ x )) , and ED ( ̃ x , P ) = T r(P 

−1 EC ( ̃ x )) = T r(P 

−1 P ) = 

T ematical expectation of the related random variable ( ̃ x in this case). 

G

1 ) 
∣∣( ˆ ρk 

k −l , Y 

k 
k −l , ̂  x k −l−1 

)]} 

1 

(
ˆ x i −1 | k −l: k + ̃  x i −1 | k −l: k 

)
−M i −1 a i −1 

∣∣[ ˆ ρk 
k −l , Y 

k 
k −l , ̂  x k −l−1 

]}} 

 

− M i −1 a i −1 

)| 
 Y 

k 
k −l , ̂  x k −l−1 

)]}}
M i −1 a i −1 

)
 −l: k F 

T 
i −1 

]}
(58) 

G } 

 

 −l , Y 

k 
k −l , ̂  x k −l−1 

)]} 

 −l−1 

)]
− E 

[
C 

(
H i ̃  x i | k −l: k 

)∣∣( ˆ ρk 
k −l , Y 

k 
k −l , ̂  x k −l−1 

)]}} 

 

]} 

(59) 

ed. For the case that �i −1 Q i −1 �
T 
i −1 

is non-invertible, see Appendix A.3 . 

A

invertible, since Q i −1 is positive definite), then �i −1 must have a full 

r f full column rank. Assume the full-rank sub-matrix is �0 
i −1 

, then �0 
i −1 

s  vectors of �i −1 to let the s row vectors, which compose the full-rank 

s sign �i −1 to be with the form showed in (60) . 

�

 

1 

]T 

(60) 

w

ow index of �i −1 . For example, κk 

∣∣
1 ≤k ≤n = τ | 1 ≤τ≤n means the kth row 

v he ( κ1 , κ2 , . . . κs −1 , κs ) 
th r ow v ect ors in �i −1 which ar e accordingly the 

ector in �̄i −1 . 
2. Proof of lemma 1 

Due to 

 

k 
0 ,k −l ≡ const, 

 

k 
0 ,k −l 

could be uniquely determined; As for G 

k 
1 ,k −l 

, G 

k 
2 ,k −l 

and G 

k 
3 ,k −

 

k 
1 ,k −l = E ˆ x k −l−1 

[
L k 1 ,k −l 

(
ρk 

k −l 

)∣∣( ˆ ρk −l−1 
1 , Y 

k −l−1 
1 , x 0 , �0 

)]
= −1 

2 

T r 
{

P 

−1 
k −l−1 

E 
[
C 

(
x k −l−1 − ˆ x k −l−1 

)∣∣(Y 

k −l−1 
1 , ˆ ρk −l−1 

1 , x 0 , �0 

)
Eq. (57) holds due to D ( ̃ x , P ) = ̃  x T P 

−1 ˜ x = T r( ̃ x T P 

−1 ˜ x ) = T r

 r(I n ×n ) , where E ( · ), briefed as E here, means computing the math

 

k 
2 ,k −l = E ˆ X k 

k −l 

[
L k 2 ,k −l 

(
ρk 

k −l 

)∣∣( ˆ ρk 
k −l , Y 

k 
k −l , ̂  x k −l−1 

)]
= −1 

2 

T r 

{ 

k ∑ 

i = k −l 

[
�i −1 Q i −1 �

T 
i −1 

]−1 
E 
[
C ( x i − F i −1 x i −1 − M i −1 a i −

= −1 

2 

T r 

{ 

k ∑ 

i = k −l 

[
�i −1 Q i −1 �

T 
i −1 

]−1 
E 
{

C 

[(
ˆ x i | k −l: k + ̃  x i | k −l: k 

)
− F i −

= −1 

2 

T r 

{ 

k ∑ 

i = k −l 

[
�i −1 Q i −1 �

T 
i −1 

]−1 {
E 
[
C 

(
ˆ x i | k −l: k − F i −1 ̂  x i −1 | k −l: k

(
ˆ ρk 

k −l , Y 

k 
k −l , ̂  x k −l−1 

)]
+ E 

[
C 

(
˜ x i | k −l: k − F i −1 ̃  x i −1 | k −l: k 

)∣∣( ˆ ρk 
k −l ,

= −1 

2 

T r 

{ 

k ∑ 

i = k −l 

[
�i −1 Q i −1 �

T 
i −1 

]−1 ·
[
C 

(
ˆ x i | k −l: k − F i −1 ̂  x i −1 | k −l: k −

+ P i,i | k −l: k − P i,i −1 | k −l: k F 
T 
i −1 − F i −1 P i −1 ,i | k −l: k + F i −1 P i −1 ,i −1 | k

 

k 
3 ,k −l = E ˆ X k 

k −l 

[
L k 3 ,k −l 

(
ρk 

k −l 

)∣∣( ˆ ρk 
k −l , Y 

k 
k −l , ̂  x k −l−1 

)]
= −1 

2 

T r 

{ 

k ∑ 

i = k −l 

R 

−1 
i 

E 
[
C ( y i − H i x i − N i b i ) 

∣∣( ˆ ρk 
k −l , Y 

k 
k −l , ̂  x k −l−1 

)]

= −1 

2 

T r 

{ 

k ∑ 

i = k −l 

R 

−1 
i 

E 
[
C 

(
y i − H i 

(
ˆ x i | k −l: k + ̃  x i | k −l: k 

)
− N i b i 

)∣∣( ˆ ρk
k

= −1 

2 

T r 

{ 

k ∑ 

i = k −l 

R 

−1 
i 

{
E 
[
C 

(
y i − H i ̂  x i | k −l: k − N i b i 

)∣∣( ˆ ρk 
k −l , Y 

k 
k −l , ̂  x k

= −1 

2 

T r 

{ 

k ∑ 

i = k −l 

R 

−1 
i 

·
[
C 

(
y i − H i ̂  x i | k −l: k − N i b i 

)
− H i P i,i | k −l: k H 

T
i 

With similar principle, H 

k 
0 ,k −l 

, H 

k 
1 ,k −l 

, and H 

k 
2 ,k −l 

could be obtain

3. discussion on that �i −1 | ( n ×s ) 
k −l≤i ≤k 

is rank deficiency 

If �i −1 | ( n ×s ) 
k −l≤i ≤k 

is not of full rank (namely �i −1 Q i −1 �
T 
i −1 

is non-

ank sub-matrix which is with dimensions s × s . Because �i −1 is o

hould be composed of s row vectors from �i −1 . Re-sort all n row

ub-matrix, gather together and to be at head of �i −1 . That is, reas

¯
i −1 = 

[
�0 

i −1 
· · · � j 

i −1 
· · ·

]T 

= 

[
�̄1 

i −1 
�̄2 

i −1 
· · · �̄s 

i −1 
�̄s +1 

i −1 
· · · �̄k 

i −1 
· · · �̄n

i −

= 

[
�̄0 

i −1 
�̄s +1 

i −1 
· · · �̄k 

i −1 
· · · �̄n 

i −1 
, 
]T 

, 

here � j 
i −1 

is a row vector from �i −1 but is not a row of �0 
i −1 

. 

Let κk be an indicator mapping the row index of �̄i −1 to the r

ector in �̄i −1 is actually the τ th row vector in �i −1 ; κ1: s means t

(1 , 2 , . . . , s − 1 , s ) th row vectors in �̄i −1 ; �̄
k 
i −1 

means the kth row v
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be 

(61) 

 i −1 are not mutually independent. That is, some row elements of w i −1 

(62) 

(63) 

is easy to know that 

(64) 

(65) 

 

] 
, (66) 

× p 
(
w̄ 

n 
i −1 

∣∣w̄ 

1 
i −1 , w̄ 

2 
i −1 , . . . , w̄ 

s 
i −1 

)
× · · · × N 

[ 
0 , �̄n 

i −1 �̄
0 
i −1 Q̄ 

0 
i −1 

(
�̄0 

i −1 

)T (
�̄n 

i −1 

)T 
] 

(67) 

 

Q̄ 

0 
i −1 

(
�̄0 

i −1 

)T 
] 

 

 

)T 
] 

× · · ·

 

)T 
] 
, (68) 

s, that is from κ1 to κ s , of [ · ]. 

0) . 

 

(
�̄0 

i −1 

)T (
�̄t 

i −1 

)T 
] 

+ log | R i | 
} 

(69) 
Let w i −1 = �i −1 q i −1 , then the covariance matrix of w i −1 should 

W i −1 = �i −1 Q i −1 �
T 
i −1 . 

Obviously, W i −1 is non-invertible. It means the row elements of w

could be linearly expressed by others. 

Rewritten w i −1 as 

w̄ i −1 = �̄i −1 ̄q i −1 , 

then we have 

w̄ 

k 
i −1 | n ≥k>s = �̄k 

i −1 

[
w̄ 

1 
i −1 

w̄ 

2 
i −1 

· · · w̄ 

s 
i −1 

]T 
, 

where �̄k 
i −1 

∣∣
( 1 ×s ) is a constant matrix (linearly expressed). Also, it 

�̄k 
i −1 = �̄k 

i −1 ·
(
�̄0 

i −1 

)−1 
. 

Since 

p 
(
w̄ 

1 
i −1 , w̄ 

2 
i −1 , . . . , w̄ 

s 
i −1 

)
= N 

[ 
0 , �̄0 

i −1 Q̄ 

0 
i −1 

(
�̄0 

i −1 

)T 
] 
, 

and (66) , 

p 
(
w̄ 

k 
i −1 

∣∣w̄ 

1 
i −1 , w̄ 

2 
i −1 , . . . , w̄ 

s 
i −1 

)
= N 

[ 
0 , �̄k 

i −1 �̄
0 
i −1 Q̄ 

0 
i −1 

(
�̄0 

i −1 

)T (
�̄k 

i −1 

)T

we have (67) . 

p 
(
w 

1 
i −1 , w 

2 
i −1 , . . . , w 

n 
i −1 

)
= p 

(
w̄ 

1 
i −1 , w̄ 

2 
i −1 , . . . , w̄ 

s 
i −1 , w̄ 

s +1 
i −1 

, . . . , w̄ 

n 
i −1 

)
= p 

(
w̄ 

1 
i −1 , w̄ 

2 
i −1 , . . . , w̄ 

s 
i −1 

)
× p 

(
w̄ 

s +1 
i −1 

∣∣w̄ 

1 
i −1 , w̄ 

2 
i −1 , . . . , w̄ 

s 
i −1 

)
× · · ·

= N 

[ 
0 , �̄0 

i −1 Q̄ 

0 
i −1 

(
�̄0 

i −1 

)T 
] 

× N 

[ 
0 , �̄s +1 

i −1 
�̄0 

i −1 Q̄ 

0 
i −1 

(
�̄0 

i −1 

)T (
�̄s +1 

i −1 

)T 
] 

Thus, Eq. (10) in this case should be (68) 

p 
[
x i | x i −1 , 

(
Y 

k 
k −l , ρ

k 
k −l , ̂  x k −l−1 

)]
= N 

[ 
( F i −1 x i −1 + M i −1 a i −1 ) | κ1: s 

, �̄0 
i −1

× N 

[ 
�̄s +1 

i −1 
· ( F i −1 x i −1 + M i −1 a i −1 ) | κ1: s 

, �̄s +1 
i −1 

�̄0 
i −1 Q̄ 

0 
i −1 

(
�̄0 

i −1 

)T (
�̄s +1

i −1

× N 

[ 
�̄n 

i −1 · ( F i −1 x i −1 + M i −1 a i −1 ) | κ1: s 
, �̄n 

i −1 �̄
0 
i −1 Q̄ 

0 
i −1 

(
�̄0 

i −1 

)T (
�̄n 

i −1

in which, the operator [ ·] 
∣∣κ1: s 

means taking the corresponding row

As a result, Eqs. (14) and (16) should be re-given as (69) and (7

L k 0 ,k −l = −n + (l + 1)(m + n ) 

2 

log (2 π) − 1 

2 

log | P k −l−1 | 

− 1 

2 

k ∑ 

i = k −l 

{ 

log 

∣∣∣�̄0 
i −1 Q̄ 

0 
i −1 

(
�̄0 

i −1 

)T 
∣∣∣+ 

n ∑ 

t= s +1 

log 

[ 
�̄t 

i −1 �̄
0 
i −1 Q̄ 

0 
i −1
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)T 

 

+

1 .

 −1

 s 
+
 P

 

| κ1

 

∗
i −1

 

1 

M

 

+

1: s 

 

)|

 

 

 +1 �̄

) 
T ·

(
¯ 0 

i −1 
Q

 

k 
2 ,k −l = −1 

2 

k ∑ 

i = k −l 

{ 

D 

(
( x i − F i −1 x i −1 − M i −1 a i −1 ) | κ1: s 

, �̄0 
i −1 Q̄ 

0 
i −1 

(
�̄0 

i −1

n ∑ 

t= s +1 

1 

�̄t 
i −1 

�̄0 
i −1 

Q̄ 

0 
i −1 

(
�̄0 

i −1 

)T (
�̄t 

i −1 

)T 
·
[
x 

κt 

i 
− �̄t 

i −1 · ( F i −1 x i −1

here x 
κt 
i 

means the κ t 
th row of x i ; �̄

t 
i −1 

means the t th row of �̄i −
Accordingly, Eq. (25) should be re-given as (71) . 

 

k 
2 ,k −l = −1 

2 

T r 

{ 

k ∑ 

i = k −l 

[ 
�̄0 

i −1 Q̄ 

0 
i −1 

(
�̄0 

i −1 

)T 
] −1 

·
{

C 

[(
ˆ x i − F i −1 ̂  x i −1 − M i

+ P i,i | k −l: k | κ1: s 
−
(
P i,i −1 | k −l: k F 

T 
i −1 

)| κ1: s 
−
(
F i −1 P i −1 ,i | k −l: k 

)∣∣
κ1:

− 1 

2 

k ∑ 

i = k −l 

{ 

n ∑ 

t= s +1 

[
ˆ x 

κt 

i 
− �̄t 

i −1 
·
(
F i −1 ̂  x i −1 + M i −1 a i −1 

)| κ1: s 

]2 +
�̄t 

i −1 
�̄0 

i −1 
Q̄ 

0 
i −1 

(
�̄0 

i −1 

)T (
�̄t 

i −1 

)T 

here 

 

�
i −1 , t = E ˆ X k 

k −l 

[
˜ x 

κt 

i 
− �̄t 

i −1 
· ( F i −1 ̃  x i −1 ) | κ1: s 

]2 = E ˆ X k 
k −l 

[
˜ x 

κt 

i 
− �̄t 

i −1 
· F i −1

Eq. (71) holds because E ˆ X k 
k −l 

[ ̃ x 
κt 
i 

] = 0 . 

Besides, Eq. (35) should be rewritten as (73) . Let D 1 = 0 , then a

ull column rank, thus B̄ is no wonder invertible. That is to say a i −

 1 = col 
i = k −l, ... ,k 

{
( M i −1 | κ1: s ) 

T ·
[ 
�̄0 

i −1 Q̄ 

0 
i −1 

(
�̄0 

i −1 

)T 
] −1 

·
[(

ˆ x i − F i −1 ̂  x i −1 −

+ 

n ∑ 

t= s +1 

[
�̄t 

i −1 
· M i −1 | κ1: s 

]T 

�̄t 
i −1 

�̄0 
i −1 

Q̄ 

0 
i −1 

(
�̄0 

i −1 

)T (
�̄t 

i −1 

)T 
·
[

ˆ x 

κt 

i 
− �̄t 

i −1 ·
(
F i −1 ̂  x i −1

= col 
i = k −l, ... ,k 

{
( M i −1 | κ1: s ) 

T ·
[ 
�̄0 

i −1 Q̄ 

0 
i −1 

(
�̄0 

i −1 

)T 
] −1 

·
[(

ˆ x i − F i −1 ̂  x i −1 

)| κ
+ 

n ∑ 

t= s +1 

[
�̄t 

i −1 
· M i −1 | κ1: s 

]T 

�̄t 
i −1 

�̄0 
i −1 

Q̄ 

0 
i −1 

(
�̄0 

i −1 

)T (
�̄t 

i −1 

)T 
·
[

ˆ x 

κt 

i 
− �̄t 

i −1 ·
(
F i −1 ̂  x i −1

 

∗
i −1 = B̄ 

−1 · Ā , 

here 

¯
 = ( M i −1 | κ1: s ) 

T ·
[ 
�̄0 

i −1 Q̄ 

0 
i −1 

(
�̄0 

i −1 

)T 
] −1 

·
[(

ˆ x i − F i −1 ̂  x i −1 

)| κ1: s 

]
+ 

n∑
t= s

nd 

¯
 = ( M i −1 | κ1: s ) 

T ·
[ 
�̄0 

i −1 Q̄ 

0 
i −1 

(
�̄0 

i −1 

)T 
] −1 

· M i −1 | κ1: s 
+ 

n ∑ 

t= s +1 

( M i −1 | κ1: s 

�̄t 
i −1 

�

 

 i −1 a i −1 ) | κ1: s 

]2 

} 

(70) 

1 

)| κ1: s 

]
F i −1 P i −1 ,i −1 | k −l: k F 

T 
i −1 

)| κ1: s 

}}
1 , t 

} 

, (71) 

˜ x i −1 | κ1: s 

]2 
(72) 

 Eq. (37) should be (74) . It should be noted that, due to M i −1 is of

 be uniquely determined. 

 

a i −1 

)| κ1: s 

]

 i −1 a i −1 

)| κ1: s 

]} 

M i −1 | κ1: s 
· a i −1 

]

− �̄t 
i −1 · M i −1 | κ1: s 

· a i −1 

]} 

(73) 

(74) 

[
�̄t 

i −1 
· M i −1 | κ1: s 

]T 

t 
i −1 

�̄0 
i −1 

Q̄ 

0 
i −1 

(
�̄0 

i −1 

)T (
�̄t 

i −1 

)T 
·
[

ˆ x 

κt 

i 
− �̄t 

i −1 ·
(
F i −1 ̂  x i −1 

)| κ1: s 

]
, (75) 

�̄t 
i −1 

)T · �̄t 
i −1 

· M i −1 | κ1: s 

¯
 

0 
i −1 

(
�̄0 

i −1 

)T (
�̄t 

i −1 

)T 
. (76) 
L

w

G

w

P

f

D

a

w

A

a

B

)
+

 M

 

 

a i −

 

(
 

�
i −

: s 
·

 

in

can

 i −1

 M

−

 κ1: s 
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